Time : Choo. 1. Nu a. c. 2. Th a C. 3. WI a 4. As a C. 5. Ac

M.Sc. BIOTECHNOLOGY FIRST SEMESTER **BIOCHEMISTRY**

MBT-102

(Use separate answer scripts for Objective & Descriptive)

Duration: 3 h

Du	ration : 3 nrs.					Full Marks: 70	
		(<u>PAR</u>	T-A: 0	bjectiv	<u>/e</u>)		
Tin	ne : 20 min.					Marks:20	
Ch	oose the correct	answer from t	he follou	ing:		1×20=20	
1.	Nutritional polysa	accharide is:					
	a. Starch and gly	cogen		b. Star	ch and chitin		
	c. Starch and cel	lulose		d. Star	ch and glucose		
2.	The synthesis of glucose from fats are called:						
	a. Glycolysis			b. Krebs cycle			
	c. Glycogenolysi	S		d. Glu	coneogenesis		
3.	What is the H ⁺ ior	n concentration in	pure wate	er?			
	a. 1×10 ⁻⁷	b. 1×10 ⁷	c. 1×10	14	d. 1×10 ⁻¹⁴		
4.	As the pKa of an a	acid increases the	acid will l	be:			
	a. More weaker			b. Mo	re stronger		
	c. Converted to	weaker solution		d. Cor	verted to basic solut	ion	
	equal to its pKa th a. The concentrat b. Conentration o c. Concentration d. The concentrat	ne solution becom ion of proton dona f proton donar bec of proton acceptor ion of proton dona	es a buffe r equals th omes zero becomes z r becomes	r, this c ie conce zero. log1/1	condition is achieved entration of proton acc 0 th of concentration of	when: eptor. proton acceptor.	
6.	A short length of of nucleotide in th	DNA molecule ha ne DNA fragment	is 80 thym is:	ine and	d 80 guanine bases. T	The total number	
	a. 160	b. 40	c. 320		d. 640		
7.	Adjacent nucleoti a. Covalent bond	des are joined by: ls		b. Pho	sphodiester bonds		
0	Which of the falle			in dan	ude bolids		
0.	 a. The α-helical p b. Discrete region dimensional st c. The β-pleated s d. A fracture that a 	ortion of a protein. of polypeptide ch ructure. sheet portion of a p	es a prote ain that ha protein.	oins folde	ain? d into a self-contained	three-	
9.	Smallest carbohvo	drates are trioses.	Which of	the foll	owing is a triose?		

- a. Glucose b. Ribulose
- d. Glyceraldehyde c. Ribose

10. Greater the number of carbon atom in chain of fatty acid:

- a. The boiling point will be higher b. The boiling point will be lesser c. The melting point will be higher
 - d. The melting point will be lower

2018/12

1

- **11.** Enzyme which helps in changing shape of a molecule:
 - a. Ligáses
 - c. Hydrolases

b. Dehydrogenases

d. Isomerases

- 12. Which type of bonding is responsible for the secondary structure of protein?
 - a. Disulphide bridges between cysteine residues.
 - b. Hydrogen bonding between c=o and N-H groups of peptide bonds.
 - c. Peptide bond between amino acids.
 - d. Salt bridges between charged side chains of amino acids.
- 13. The rate determining step of Michaelis-Menten kinetics is:
 - a. The complex dissociation step to produce products.
 - **b**. The complex formation step.
 - c. The product formation step.
 - d. None of the above.
- 14. Which of the following statements about the mechanism of allosteric control of enzyme activity is correct?
 - a. Allosteric enzymes are typically single-subunit enzymes.
 - **b.** Allosteric enzymes show greater sensitivity to changes in substrate concentration compared to classical type enzymes with hyperbolic kinetics.
 - c. Allosteric enzymes show Michaelis menten Kinetics.
 - **d.** Allosteric enzymes show reduced sensitivity to changes in substrate concentration compared to classical type enzymes with hyperbolic kinetics.
- 15. The first step in the payoff phase of glycolysis is:
 - a. Reduction of 1, 3-bisphosphoglycerate to glyceraldehyde 3-phosphate.
 - b. Oxidation of glyceraldehyde 3-phosphate to 1, 3-bisphosphoglycerate.
 - c. Reversible conversion of dihydroxyacetone phosphate to glyceraldehyde 3-phosphate.
 - d. Irreversible conversion of dihydroxyacetone phosphate to glyceraldehyde 3-phosphate.
- 16. Dihydroxyacetone phosphate is rapidly and reversibly converted to:
 - a. Glyceraldehyde 3-phosphate b. 1, 3-bis-phosphoglycerate
 - c. Fructose 1, 6-bisphosphate d. Fructose 6-phosphate
- **17.** If energy releases excessively in environment, having less energy products than reactants, resulting reaction is called:
 - a. Redox reactionb. Thermodynamicsc. Exergonic reactiond. Endergonic reaction
- 18. RÜBISCO enzyme is also called as.....
 - a. Carboxytetra mutase b. Carboxydimutase
 - c. Carboxytrimutase d. Carboxyunimutase
- 19. Which of the statement is true regarding Km?
 - a. It is the measure of stability of enzyme substrate complex.
 - b. It is the measure of the stability of the affinity of an enzyme for its substrate.
 - c. A high Km indicates weak substrate binding.
 - d. All of these.
- 20. Which of the following molecules is a typical fatty acid?
 - a. A molecule that has an even number of carbon atoms in a branched chain.
 - b. An amphipathic dicarboxylic acid with unconjugated double bonds.
 - **c.** A molecule that has one cis double bond in a linear carbon chain.
 - d. A polar hydrocarbon with that reacts with NaOH to form a salt.
 - = = * * = =

1	PA	RT	-B	:	D	es	cri	ptive	
	-								

Tin	Fime : 2 hrs. 40 min. Mai				
[Answer question no.1 & any four (4) from the rest]					
1.	Define Enzymes and derive Michaelis-Menten equation for enzyme substrate reaction.	10			
2.	a. Write short note on zwitter ions.b. Write short note on peptide bonds.	5+5=10			
3.	a. Write a note on activation energy.b. Explain the role of allosteric modulators in enzyme substrate reaction.	4+6=10			
4.	a. What are lipids how are they classified?b. Write the reaction involved when fatty acid is reacted with alkali.	6+4=10			
5.	a. Define carbohydrates and how are they classified?b. Explain the glycolytic pathway.	5+5=10			
6.	a. What is photosynthesis? Describe in brief the phases of photosynthesis.b. Describe the dark reaction of photosynthesis elaborately.	4+6=10			
7.	a. Throw a light on the concept of p H and p K of acid and base.b. Derive the equation of Henderson-Hasselback for acid and base.	5+5=10			
8.	a. Define proteins and how are they classified based on their organization?b. Write a note on Ramachandran plot.	6+4=10			

= = *** = =