M.Sc. MATHEMATICS THIRD SEMESTER OPERATION RESEARCH

MSM - 304B

[USE OMR FOR OBJECTIVE PART]

Duration: 1:30 hrs.

Full Marks: 35

Obj	ective
-----	--------

		Objective	=)	Marks: 10
	:: 15mins. 100se the correct answer	from the	following:	1×10=10
1.	Operations research is the applic optimal Solutions to the problem a. economical c. a and b both	eation of ns. b. d.	methods to arrive scientific artistic	
2.	Operations management can be problem within a system to yield a. Suitable manpower c. Financial operations	the optimal s b. d.	mathematical technique and tools None of these	
3.	OR can evaluate only the effects a. Personnel factors.c. Numeric and quantifiable fa	ctors. d.	None of these	
4. 5.	The objective function and cons variables and a. Positive and negative c. Strong and weak Who defined OR as scientific m quantitative basis for decisions a. Morse and Kimball (1946)	b d ethod of provi	Actiables. Controllable and uncor None of the above ding execuitive departme	ntrollable ents with a
6.	c. E.L. Arnoff and M.J. Netzor Hungarian Method is used to s a. A transportation problem c. A L.P. problem	g d olve b	. None of the above . A travelling salesman . Both a & b	problem
7.	a. Policiesc. Both A and B	1	None of the above	
8.	Which technique is used in fine as profit maximization or cost a. Quailing Theory c. Both A and B	reduction unde	for optimizing a given or er certain constraints? b. Waiting Line I. None of these	bjective, such

- OR techniques help the directing authority in optimum allocation of various limited resources like
 - a. Men and Machine

b. Money

c. Material and Time

- d. All of the above.
- 10. Consider the linear equation $2x^1 + 3x^2 4x^3 + 5x^4 = 10$. How many basic and non-basic variables are defined by this equation?
 - a. One variable is basic, three variables are non-basic
- b. Two variables are basic, two variables are non-basic
- Three variables are basic, one variable is non-basic
- d. All four variables are basic

[Descriptive]

Time: 1 hr. 15 mins.

Marks: 25

[Answer question no.1 & any two (2) from the rest]

1. Describe the role of operation research in India

5+5=10

5

2. a. Find the Maximum value of $Z = 2x_1 + 3x_2$ with the help of graphical method.

Subject to
$$x_1 + x_2 \le 30$$

$$x_2 \ge 3$$

$$x_2 \le 12$$

$$x_1 - x_2 \ge 0$$

$$0 \le x_1 \le 20$$

b. Use simplex method

$$Maximum Z = 2x_1 + 5x_2$$

Subject to
$$x_1 + 4x_2 \le 24$$

$$3x_1 + x_2 \le 21$$
,

$$x_1 + x_2 \le 9$$

$$x_1, x_2 \ge 0$$

- 3. a. Food X contains 6 units of vitamin A per gram and 7 units of vitamin B per gram and costs 12 paise per gram. Food Y contains 8 units of vitamin A per gram and 12 units of vitamin B per gram and cost 20 paise per gram. The daily minimum requirement of vitamin A and vitamin B is 100 units and 120 units respectively. Find the minimum cost of product mix by the Big M method
 - b. Solve the following Transportation problem by North west corner rule

	W_1	W_2	W_3	Supply
F ₁	2	7	4	5
F ₁	3	3	1	8
F ₁	5	4	7	7
F ₁	1	6	2	14
Demand	7	9	18	34

4. a. Solve the problem by Big M method

Minimum
$$Z = 5x_1 + 6x_2$$

Subject to $2x_1 + 5x_2 \ge 1500$
 $3x_1 + x_2 \ge 1200$,
 $x_1, x_2 \ge 0$

7+3=10

7+3=10

b. Solve the following Transportation problem by Least Cost Entry Method

	W_1	W_2	W_3	Suppl
				у
F ₁	2	7	4	5
F ₁	3	3	1	8
F ₁	5	4	7	7
F ₁	1	6	2	14
Dema nd	7	9	18	34

5. A bakery keeps of a popular brand of cake. Daily demand based on past experience is given below

4	+3	+	3
	=	= 1	0

Daily Demand	0	15	25	35	45	50
Probably	0.01	0.15	0.20	0.50	0.12	0.02

Consider the following sequence of random numbers:

48, 78, 09, 51, 56, 77, 15, 14, 68, and 09

- **a.** Using the sequence, simulate the demand for the next 10 days.
- Find the stock situation if the owner of the bakery decides to make 35 cakes every day. Also
- c. Estimate the daily average of demand for the cakes on the basis of the simulated data.

== ***=: