B.Sc. MATHEMATICS FIRST SEMESTER DIFFERENTIAL EQUATION-I

BMT – 103 (USE OMR FOR OBJECTIVE PART)

Duration: 1:30 hrs.

Full Marks: 35

Objective

Time: 15 mins.

Marks: 10

1×10=10

2024/12

SET

A

Choose the correct answer from the following:

1. The complementary function (C.F) of $(D^2 - 3D + 2)y = 0$, $D = \frac{d}{dx}$ is

a.
$$C.F = c_1 e^x - c_2 e^{2x}$$
, c_1 , c_2 are arb constant

b.
$$C.F = c_1 e^x + c_2 e^{2x}$$
, c_1 , c_2 are arb constant

c.
$$C.F = c_1 e^x + c_2 e^{-2x}$$
, c_1 , c_2 are arb constant

d.
$$C.F = c_1 e^{-x} + c_2 e^{-2x}$$
, c_1 , c_2 are arb constant

2. A differential equation of the form $\frac{dy}{dx} + Py = Qy^n$, P, Q are function of x is called

- a. Linear Differential Equation
- b. Exact DE

c. Bernouli's Equation

d. none of the above

The Differential Equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R, P, Q, R$ are function of x only

is called

- a. Non-Linear Differentiaal Equation of second order with constant coefficient
- b. Homogeneous DE
- c. Linear Differentiaal Equation of second order with constant coefficient
- d. Non-homogeneouss DE

- Solution of the following differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = e^x$ is
- a. $y = e^{-x-2} \left\{ c_1 \cos \frac{\sqrt{3}}{2} x + c_2 \sin \frac{\sqrt{3}}{2} x \right\} + \frac{e^x}{3}$
- b. $y = e^{-x/2} \left\{ c_1 \cos \frac{\sqrt{3}}{2} x c_2 \sin \frac{\sqrt{3}}{2} x \right\} + \frac{e^x}{3}$
- c. $y = e^{-x/2} \left\{ c_1 \cos \frac{\sqrt{3}}{2} x + c_2 \sin \frac{\sqrt{3}}{2} x \right\} + \frac{e^x}{2}$
- d. none of the above
- 5. The General solution of a Linear Differential Equation of second order with constant coefficient is
 - a. $v = C.F \times P.I$

b. y = P.I

c. v = C.F

d. v = C.F + P.I

- 6. If m = 2.2, then C.F is
 - a. $y = C_1 e^{3x} + C_2 e^{3x}$, C_1 , C_2 are arbitrary constant
 - b. $y = C_1 e^{2x} + x C_2 e^{2x}$, C_1 , C_2 are arbitrary constant
 - c. $y = C_1 e^{3x} + xC_2 e^{3x}$, C_1 , C_2 are arbitrary constant
 - d. none of the aabove
- 7. The Auxillaary Equaation (A.E) of the following differential equation

$$(D^3 - 4D^2 + 5D - 2)y = 0_{is}$$

- a. $m^3 4m^2 + 5m 2 = 0$ b. $(m^3 4m^2 + 5m 2)y = 0$ c. $D^3 4D^2 + 5D 2 = 0$ d. $(D^3 4D^2 + 5D 2)y = 0$
- 8. The Differential equation Mdx + Ndy = 0 is exact if
 - a. $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$

b. $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

c. $\frac{\partial M}{\partial v} \neq \frac{\partial N}{\partial x}$

 $\frac{\mathrm{d.}}{\partial x} \neq \frac{\partial N}{\partial y}$

9. Integrating factor of a Linear differential equation is

a.
$$I.F = e^{\int Rdx}$$

b.
$$I.F = e^{\int Pdx}$$

c.
$$I.F = e^{\int Qdx}$$

d.
$$I.F = e^{-\int Pdx}$$

10. Solution of $(1+x^2)dy = (1+y^2)dx$ is

a.
$$(y-x)=c(1-yx)$$
, c is arb constant

b.
$$(y-x) = c(1+x)$$
, $c_{\text{is arb constant}}$

c.
$$(y-x) = c(1+yx)$$
, $c_{is arb constant}$

d.
$$(y+x) = c(1+yx)$$
, c is arb constant

[<u>Descriptive</u>]

Time: 1 hr. 15 mins. Marks: 25

[Answer question no.1 & any two (2) from the rest]

1. SOLVE

(a) $(D^3 + 1)y = (e^x - 1)^2$

(b)
$$(D^2 - 3D + 2)y = Sin2x$$

2. What do you mean by Linear Differential Equation of second order with constant coefficient. Give one example and Solve

$$(D^3 - 8)y = 0$$

- 3. What is the definition of Differential Equation. Find the differential equation of the family of curves $y = Ae^{2x} + Be^{-2x}$ for different values of A, B.
- 4. What do you mean by Homogeneous Differential Equation. Solve $y x \frac{dy}{dx} = x + y \frac{dy}{dx}$
- 5. What is Bernouli's Equation. Write two difference between Linear Differential Equation and Bernouli's Equation. Also solve the following equation $\frac{dy}{dx} + 2xy = e^{-x^2}$

== ***==

2+8=10