SET A

Full Marks: 70

 $1 \times 20 = 20$

B.SC. MATHEMATICS FIRST SEMESTER CALCULUS BMT - 101

(USE OMR FOR OBJECTIVE PART)

Duration: 3 hrs.

Objective

Time: 30 min.

Marks: 20

Choose the correct answer from the following:

- 1. The number of possible functions that can be defined from $X = \{a, b\}$ to $Y = \{p, q, r\}$ is
 - a. 8

 - c. 5

- b. 9
- d. None of these
- 2. The number of one-one functions from $X = \{a, b\}$ to $Y = \{p, q, r\}$ is

b. 5

c. 6

- d. 7
- **3.** The step function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = [x], where [x] denotes the greatest integer $\leq x$ is
 - a. Continuous for all $x \in \mathbb{R}$
 - c. Discontinuous at all integers in R
- b. Continuous at integers in R
- d. Discontinuous at all non-integers in R
- 4. The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{|x|}{x}$ is
 - a. Continuous at x = 0
 - e. Discontinuous at $x \neq 0$

- b. Discontinuous at x = 0
- d. False for all the cases here
- 5. Let $y = f(x) = |x|, x \in \mathbb{R}$. Then x = 0, f(x) is
 - a. Both continuous and derivable
 - c. Derivable but not continuous
- b. Continuous but not derivable
- d. Neither continuous nor derivable
- 6. If $y = x \sin x$ then $\frac{d^2y}{dx^2}$ at x = 0 is

b. -2

c. 0

- d. 1
- 7. If $f(x) = \tan x$, then f'(x) at $x = \frac{\pi}{4}$ is
 - c. 2

- b. $-\sqrt{2}$ d. -2
- 8. If $y = \sin x, x \in \mathbb{R}$, then y_n is
 - a. $\cos\left(\frac{n\pi}{2} + x\right)$ c. $\cos\left(\frac{n\pi}{2} x\right)$

b. $\sin\left(\frac{\pi}{2} + x\right)$

d. $\sin\left(\frac{n\pi}{2} - x\right)$

9. T	he gradient of	the tangent t	o the curve	$y = x^3 -$	2x at $x = 1$	is
------	----------------	---------------	-------------	-------------	---------------	----

10. The gradient of the normal to the curve
$$y = f(x)$$
 at a point x_0 on the curve is given by

a.
$$f'(x_0)$$

b.
$$\frac{1}{f(x_0)}$$

$$c. -\frac{1}{f(x_0)}$$

11. Let
$$y = f(x)$$
 be a function of real numbers such that

$$f(x)$$
 is continuous in $[a, b]$

(ii)
$$f(x)$$
 is derivable in (a, b)

(iii)
$$f(a) = f(b)$$

Then by Rolle's theorem

a.
$$f'(x) > 0$$
 for all $x \in [a, b]$

b.
$$f'(x) < 0$$
 for all $x \in [a, b]$

c.
$$f'(x) = 0$$
 for at least one $x \in (a, b)$

12. The formula
$$\frac{y\sqrt{1+\left(\frac{dy}{dx}\right)^2}}{\frac{dy}{dx}}$$
 denotes the length of

d. Subnormal at a point of the curve
$$y = f(x)$$

13. If a function
$$y = f(x)$$
 is

(i) Continuous in
$$[a, b]$$

(ii) Derivable in
$$(a, b)$$

Then there is a point *c* such that $f'(c) = \frac{f(b) - f(a)}{b - a}$ where

a.
$$a \le c < b$$

b.
$$a < c \le b$$

c.
$$a \le c \le b$$

d.
$$a < c < b$$

14. If
$$y = f(x) = \log x$$
, then y_n is given by

$$b. \ \frac{(n-1)!}{\chi^n}$$

c.
$$\overline{x'}$$

d.
$$(-1)^{n-1} \frac{(n-1)!}{x^n}$$

15. The value of
$$y_n$$
, where $y = (ax + b)^n$ is

$$n! a^n$$
 $n! b^n$

16. Rolle's theorem is valid for the function
$$f(x)$$
 if

a.
$$f(x) = \tan x$$
 in $[0, \pi]$

b.
$$f(x) = \cos \frac{1}{x} \ln [-1, 1]$$

c.
$$f(x) = x^2$$
 in [2, 3]

d.
$$f(x) = x(x+3)$$
 in $[-3, 0]$

17. The necessary condition for a function
$$f(x)$$
 to have an extreme value at $x = e$ is

a.
$$f'(c) > 0$$

b.
$$f'(c) = 0$$

c.
$$f'(c) < 0$$

- **18.** A function f(x) has maximum value at x = e if
 - a. f'(c) = 0 and f''(c) > 0

19. If f(x) = |x| then

b. f'(c) = 0 and f''(c) < 0d. $f'(c) \neq 0$ and f''(c) = 0

- c. f'(c) = 0 and $f''(c) \neq 0$
- **b.** f(x) is maximum at x = 0
- a. f'(0) = 0c. f(x) is minimum at x = 0

- d. None of these
- 20. The function $f(x) = x^3 6x^2 + 24x + 4$ has
 - a. A maximum value at x = 2
- b. A minimum value at x = 2
- A maximum value at x = 4 and a
- d. Neither maximum nor minimum at
- minimum value at x = 6

any point.

[Descriptive]

Marks: 50 Time: 2 hrs. 30 min.

[Answer question no.1 & any four (4) from the rest]

- 5+5=10 1. a. Define derivative f'(a) of a function f(x) at a point x = a. Find f'(a) for the function f(x) = |x|, if it exists.
 - **b.** If $y = f(x) = x^2 \sin x$ then compute $\left[\frac{dy}{dx}\right]_{x=0}$
- 5+5=10 2. a. Construct all possible functions from $A = \{a, b, c\}$ to $B = \{x, y\}$. Hence find out
 - (i) the number of onto functions
 - (ii) the number of functions which are not onto.
 - **b.** Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = [x] where [x]denotes the greatest integer $\leq x$.

Show that f is continuous at x = 0 from the right but it is not continuous from the left.

- 3. a. What do you mean by $\lim_{x\to a} f(x) = l$. Show that $\lim_{x\to 0} \sin x = 0$. 5+5=10
 - **b.** A function $f: \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = |x| + |x 1|, x \in \mathbb{R}$. Draw the graph of the function f(x) for $-1 \le x \le 2$.

4. a. Examine the limit of the function f(x) as $x \to 2$ where

$$f(x) = \begin{cases} \frac{|x - 2|}{x - 2}, & x \neq 2 \\ 0, & x = 2 \end{cases}$$

Examine the continuity of f(x) at x = 2

b. Evaluate the following limits

(i)
$$\lim_{x\to x} \left(1+\frac{2}{x}\right)^x$$

- (ii) $\lim_{x\to x} \left(\frac{x-3}{x+2}\right)^x$
- 5. a. Examine the continuity of the function $f: \mathbb{R} \to \mathbb{R}$ defined by

5+5=10

$$f(x) = \begin{cases} x, & 0 \le x < \frac{1}{2} \\ 1, & x = \frac{1}{2} \\ 1 - x, & \frac{1}{2} < x < 1 \end{cases}$$

b. If $y = \left(\frac{1}{x}\right)^x$, show that $y_2(1) = 0$ where

$$y_2(1) = \left[\frac{d^2 y}{dx^2} \right]_{x=1}$$

6. a. If $y = (\sin^{-1} x)^2$, then prove that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 2 = 0$. Hence by using Leibnitz theorem show that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$$

- **b.** If a function y = f(x) is derivable at a point x_0 in its domain of definition, then prove that it is continuous at the point.
- 7. a. Find the equation of tangent to the parabola $v^2 = 4\pi v$ at (z = 2)
- 7. **a.** Find the equation of tangent to the parabola $y^2 = 4ax$ at (a, -2a). 5+5=10 **b.** State and prove Lagrange's mean value theorem.
- 8. a. Investigate the maximum and minimum values of the function $f(x) = 2x^3 15x^2 + 36x + 10$ 5+5=10
 - **b.** Show that the maximum value of $\left(\frac{1}{x}\right)^x$ is $e^{\frac{1}{e}}$