B.SC. PHYSICS FIRST SEMESTER

INTRODUCTION TO MATHEMATICAL PHYSICS

SET

BSP – 101 [USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Full Marks: 70

(Objective)

Time: 30 min.

a. W(f,g) = fg - gf'

e. W(f, g) = g g' - f f'

a. 11/6

с. п/2

The angle between the vectors is

Marks: 20

Choose the correct answer from the following:

 $1 \times 20 = 20$

1.	Curl grad $\vec{r} = ?$	
	a. 1	b. 0
	c. 3	d. ∞
2.	$\nabla \times (\phi \vec{a})$, where Φ is a scalar field and \vec{a} is a vector field is given by	
	a. $\phi \vec{\nabla} \times \vec{a}$	b. $\nabla \vec{\phi} \times \vec{a}$
	c. $\vec{a} \times \nabla \vec{\phi}$	d. $\nabla \vec{\phi} \times \vec{a} + \phi \vec{\nabla} \times \vec{a}$
3.	If a vector field $\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k}$, then $\nabla \times \nabla \times \vec{F}$ is	
	a. 0	b. ĵ
	c. 2 <i>ĵ</i>	d. $3\hat{k}$
4.	Which of the following is axial vector?	
	a. momentum	b. displacement
	c. torque	d. force
5.	What is a Laplacian operator?	
	a. second order differential operator	b. first order differential operator
	c. a complex operator	d. null function
6.	How to relate double integrals with line integrals in a plane	
	a. Green's Theorem	b. Stokes theorem
	c. Gauss theorem	d. Greens hypothesis
7.	The Wronskian of two differentiable functions f and g is	

8. The magnitudes of two vectors are 3 and 4 units and their dot product is 6 units.

1

b. W(f, g) = f g' - g f

d. W(f, g) = f g' - g f'

b. n/3

d. n/4

- 9. ----- of gradient is a Laplacian operator. (Fill in the blank)
 - a. Divergence

b. Curl

c. Gradient

- d. None of these
- 10. The gradient of a scalar quantity is a ----
 - a. vector function

b. vector field

c. Scalar function

- d. Vector Potential
- The electric field due to a point charge Q is expressed $\stackrel{
 ightarrow}{E}=rac{Q\hat{r}}{4\pi\varepsilon_{0}r^{2}}$, then the 11.

divergence of electric field due to that point charge is

a.
$$\frac{3Q}{4\pi\varepsilon_0 r^2}$$

b.
$$\frac{2Q}{4\pi\varepsilon_0 r}$$

d.
$$\frac{3Q}{4\pi\varepsilon_0 r}$$

- 12. Stoke's theorem is the relationship between
 - a. Surface and volume integral
 - c. line and volume integral
- b. line and surface integral
- d. none of these
- 13. Let \vec{F} be the force on a particle moving along \vec{C} . Then $\int_{C} \vec{F} \cdot d\vec{r}$ represents
 - a. velocity of the particle
 - c. work done by the force

- b. projection of \vec{F} in the direction of the position vector of the particle
- d. acceleration of the particle
- 14. What is the wronskian determinant of x^2, x^3
 - a. 2x4 c. 3 x4

- b. x4 d. 4 x4
- 15. What is a first-order differential equation?
 - An equation involving derivatives of
 - any order
 - c. An equation involving only the second derivative of a function
- An equation involving only the first derivative of a function
- d. An equation involving no derivatives
- 16. Which of the following is a first-order differential equation?
 - a. $\frac{d^2y}{dy^2} + y = 0$

b. $\frac{dy}{dx} + y = 0$

e. $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + y = 0$

d. None of these

17. Particular integral of $y'' + 2y' - 3y = e^{2x}$ is

a.
$$-\frac{1}{5}e^{2x}$$

b.
$$\frac{1}{5}e^{2x}$$

c.
$$-\frac{1}{5}$$

d.
$$\frac{1}{5}$$

18. The roots of the characteristic equation of $\frac{d^2y}{dx^2} + \frac{2dy}{dx} + 2y = 0$

a. Real and equal

b. Real and but not equal

c. Imaginary

d. Undefined

19. For the right handed system of three coplanar vectors $\vec{A} = \hat{i} - \hat{j} - 2\hat{k}$,

 $\vec{B} = 3\hat{i} + 5\hat{j} + 6\hat{k}, \vec{C} = -\hat{i} + 4\hat{j} + m\hat{k}$, the value of m must be equal to

a. (

b. 1

c. 6.5

d. 8

16 $\overrightarrow{A} = x\hat{i}$ and $\overrightarrow{B} = y\hat{j}$ then $\nabla(\overrightarrow{A}.\overrightarrow{B})$ is equal to

a.
$$x\hat{i} + y\hat{j}$$

b.
$$\frac{1}{2}yx^2\hat{i} + \frac{1}{2}xy^2\hat{j}$$

c. 0

d.

(<u>Descriptive</u>)

Time: 2 hrs. 30 min.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

1. a. Find the value of $\nabla \cdot (\frac{a \times r}{|r|^n})$, where $r = x\hat{i} + y\hat{j} + z\hat{k}$.

5+5=10

b. Solve $\frac{d^2y}{dx^2} + 6y = \sin 4x$

2. **a.** If four vectors whose position vectors are $\vec{a}, \vec{b}, \vec{c}$ are coplanar, show that $[\vec{a}\vec{b}\vec{c}] = [\vec{a}'\vec{d}\vec{b}] + [\vec{a}'\vec{d}\vec{c}] + [\vec{d}'\vec{b}\vec{c}]$

5+5=10

- **b.** An equation relating to stability of an areoplane is $\frac{dv}{dt} = g\cos\alpha kv, \text{ where } v \text{ is the velocity, } g,a,k \text{ being constants. Find an expression for the velocity if } v=0 \text{ when } t=0.$
- 3. State Green's theorem. (a) Using Green's theorem, evaluate $\int_{c} (x^2ydx + x^2dy)$, where c is the boundary described counter clockwise of the triangle with vertices (0,0), (1,0),(1,1). (b) A vector field **F** is given by **F**=sinyi+x(1+cosy)**j**. Evaluate the line integral $\int_{c} \mathbf{F} \cdot d\mathbf{r}$, where c is the circular path given by $x^2 + y^2 = a^2$
- 4. **a.** Evaluate $\nabla^2(\ln r)$. 6+4=10**b.** Prove that $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$
- 5. State Gauss's Divergence theorem. Evaluate $\iint \vec{A} \cdot \hat{n} dS$, where $\vec{A} = 18z\hat{i} 12\hat{j} + 3y\hat{k}$ and S is that part of the plane 2x + 3y + 6z = 12 which is located in the first octant.
- 6. Solve a. $(D^2 - 4D + 4)Y = 2x^3e^{2x}$ b. $(D^3 + 1)y = e^{-x}$
- 7. **a.** Prove that for every vector field \vec{V} , $div(curl\vec{V}) = 0$. **b.** Show that $div(grad\ r^n) = n(n+1)r^{n-2}$, where $r = (x^2 + y^2 + z^2)^{1/2}$
- 8. Solve 5+5=10a. $(1+x^2)dy xydx = 0$
 - **b.** Find the value of λ , for the differential equation $(xy^2 + \lambda x^2 y)dx + (x + y)x^2 dy = 0$ is exact.

== *** = =