B.SC. CHEMISTRY THIRD SEMESTER PHYSICAL CHEMISTRY- II

BSC - 301

[USE OMR FOR OBJECTIVE PART]

SET

Marks: 20

 $1 \times 20 = 20$

Full Marks: 70

Objective)

Duration: 3 hrs.

Time: 30 min.

Choose the correct answer from the following:

1. The pH of a solution containing an equal volume of 0.1 M NaOH and 0.1 M HCl is

- a. 1.00
- c. 7.0

- b. 2.0
- d. 12.65 2. Which of the following solutions will act as a buffer?
 - a. NaOH and NaCl

b. HCl and KCl

e. NH4OH and NH4CI

- d. HCl and NaOH
- 3. The pH of 0.1M NaOH solution is
 - a. 1

b. 13

c. 10

- d. 12
- 4. The solubility product for a salt of type AB is 4×10^{-8} . The molar solubility of its standard solution will be
 - a. 2 × 10-4 mol/L

b. 2 × 10-16 mol/L

c. 16 × 10-16 mol/L

- d. $4 \times 10^4 \text{ mol/L}$
- 5. Given an endothermic reaction:

 $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$

- If the temperature is increased, then
- c. The equilibrium will shift in the forward direction
- b. The equilibrium will shift in the backward direction
- Liquefaction of H2O
- What is the general mechanism of an enzyme?

The equilibrium will not be disturbed

- a. It acts by reducing the activation energy
- b. It acts by increasing the activation energy
- e. It acts by decreasing the pH
- d. It acts by increasing the pH
- 7. The catalyst quantity and composition at the end of the reaction
 - a. Diminishes

- b. Both changes
- c. Both remain unchanged
- d. Becomes negligible
- 8. The factor which changes when catalyst is used in a reaction is
 - a. Enthalpy of reaction

b. Activation energy

e. Equilibrium constant

- d. Temperature
- 9. The standard enthalpy at a fixed surface coverage is known as -----

Part Inches		a. Isobaric enthalpy c. Isosteric enthalpy		Isochoric enthalpy Absolute enthalpy
	10.	If pressure (p) and temperature (t) for a give plotted graphically, then the curve of this plan. Isostere c. Isochor	ot i	mount of adsorption of a system are is known as Isobar Desorption curve
	11.	 Which of the following describes Raoult's La. The partial pressure of a component is equal to its mole fraction in the vapor phase c. The boiling point of a solution increases with solute concentration 	b.	The partial pressure of a component in equal to its mole fraction in the liquid phase The freezing point of a solution decreases with solute concentration.
	12.	The freezing point depression of a solution		
		a. The nature of the solute	b.	The concentration of the solute particles
		c. The boiling point of the solute	d.	The density of the solution
	13.	When a solution is prepared by dissolving 0	.5 r	mol of NaCl in 1 kg of water, it is terme
		a. 0.5 molal solutionc. 1 molar solution		0.5 molar solution 1 molal solution
	14.	What is the effect on vapor pressure when a a. Vapor pressure increases c. Vapor pressure remains constant	b.	latile solute is added to a solvent Vapor pressure decreases Vapor pressure becomes zero
	15.	The boiling point elevation constant (KbK_ba. The solute c. The temperature of the solution	b.) is specific to The solvent The molality of the solution
	16.	If one or more modes bring about a chemical amount of heat absorbed or evolved during way was obeyed. This law is known as a. Hess law c. Lavoisier law	the	
	17	The relation between enthalpy, entropy and a. $\Delta G = \Delta H - T\Delta S$ c. $\Delta G = \Delta H + T\Delta S$	b.	bb's free energy is $\Delta H = \Delta G - T\Delta S$ None of the above
	18.	Standard enthalpy of a reaction is determine a. 298 K and 1 bar pressure c. 25° C and 1 atm pressure	b.	
	19.	Aprocess is spontaneous if a. $\Delta G > 0$ c. $\Delta G = 0$		$\Delta G < 0$ None of the above
	20.	The relation between Gibb's free energy an $a \Delta G = \Delta A + P\Delta V$		lelmholtz free energy is ΔA =ΔU - TΔS
		,		USTM/COF

(<u>Descriptive</u>)

Time: 2 hrs. 30 min. Marks: 50

[Answer question no.1 & any four (4) from the rest]

[Answer question no.1 & any four (4) from the rest]				
1.	a. Calculate the pH of a buffer solution prepared by mixing of 10 ml of 0.1 M acetic acid and 10 ml of 0.01 M sodium acetate. (Given pKa=4.76)	2+3+2+3 =10		
	b. Calculate how long a hydrogen atom will remain on the surface of a solid at 298 K if its desorption activation energy is: (i) 15 kJ mol ⁻¹ and (ii) 150 kJ mol ⁻¹ . Assume that $\tau_0 = 10^{-13}$ s.			
	c. Define colligative property. List two colligative properties.			
	d. What is thermochemistry? Write about the enthalpy of formation and enthalpy of combustion. Explain with examples.			
2.	a. What do you mean by buffer capacity? How many types of buffer mixture are there and what are they? Give one example of each type of buffer.	2+2+2 =6		
	b. What would be the pH of an aqueous solution obtained by mixing 5 g of acetic acid and 7.5 g of sodium acetate and making the volume equal to 500 ml? Dissociation constant of acetic acid at 25 °C is 1.75×10^{-5} .	4		
3.	a. Derive the relationship between solubility product and molar solubility of a sparingly soluble salt AB.	3+3+4 =10		
	b. The solubility product of Mg(OH) ₂ at 25 °C is 1.4×10^{-11} . Calculate the solubility of Mg(OH) ₂ in gL ⁻¹ . (Mg = 24, O = 16, H = 1)			
	c. What are the different categories of hydrolysis of salt? Explain any one.			
4.	a. In an acid hydrolysis reaction $A + H_2O + H^+ \rightarrow P$ where $[H^+] = 0.1 \text{ mol } L^{-1}$ and H_2O is present in large excess, the apparent rate constant is $1.5 \times 10^{-5} \text{ s}^{-1}$. Calculate the true rate constant.	2+4+4 =10		
	b. Prove the following for a diatomic gas: $\theta = (Kp)^{1/2}/(1+Kp)^{1/2}$			

 $\boldsymbol{c}.$ Draw a Langmuir plot and explain how $\boldsymbol{\theta}$ varies with pressure.

5.	a. Write the factors affecting the activity of nanocatalysts.				
	b. Prove the rate of the reaction $r = k_2[E]_o[S]/K_m + [S]$ for an enzyme catalysing the conversion of sugar into maltose.	=10			
	c. How does the specificity and selectivity of catalyst affect its catalytic activity?				
6.	a. Discuss the positive deviation of Raoult's Law.	2+2+2+4 =10			
	b. 10g of a substance is dissolved in 250 mL of H ₂ O. The osmotic pressure of solution is 600 mm at 15°C. Calculate the mol. wt. of the substance?				
	c. Find out the molarity of a solution which contains 32.0 g of methyl alcohol (CH ₃ OH) in 200 mL solution.				
	d. What is Gibbs free energy and Helmholtz free energy? Derive the relation between Gibb's free energy and Helmholtz free energy.				
7.	a. The osmotic pressure of an aqueous solution of a protein containing 0.63 g of a protein in 100 g of water at 300 K was found to be 2.60×10^{-3} atm. Calculate the molar mass of the protein. R= 0.082 L atm K ⁻¹ mol ⁻¹	3+3+2+2 =10			
	b. Deduce the thermodynamic relation between relative lowering of vapour pressure and osmotic pressure.				
	c. Calculate the normality of a solution of NaOH if 0.4 g of NaOH is dissolved in 100 mL of the solution.				
	d. The relative lowering of vapour pressure produced by dissolving 7.2 g of a substance in 100 g water is 0.00715. What is the molecular mass of the substance.				
8.	a. Derive the Kirchhoff equation for enthalpy of a reaction.				
	b. Explain the Hess's law and its application.				
	c. What is flame and explosion temperature?				
	d. The heat of dissociation per mole of a gaseous water at 18 °C and 1 atm Pressure is 241750 J, Calculate its value at 68 °C. Data given are Cp (H_2O) = 33.56, Cp (H_2) = 28.83, Cp (H_2) = 29.12 JK- H_2 - H_2 - H_2 - H_3 - H_4 - H_2 - H_4 - H_5 - H_5 - H_6				