5. a. what do you mean by Assignment Problem?
b. Distinguish between assignment problem and transportation problem.
c. Four jobs are to be done on four different machines. The cost (in rupees) of producing $i$ th job on the jth machine is given below:

| Jobs |  | Machines |  |  |  | $\mathrm{M}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | M4 |  |
|  | J 1 | 15 | 11 | 13 | 15 | 15 |
|  | $\mathrm{J}_{2}$ | 17 | 12 | 12 | 13 | 13 |
|  | $J_{3}$ | 14 | 15 | 10 | 14 | 14 |
|  | $\mathrm{J}_{4}$ | 16 | 13 | 11 | 17 | 17 |

Assign the jobs to different machines so as to minimize the total cost.
6. a. What is an unbalanced transportation problem? How such a $3+7=10$ problem handled and solution is obtained?
b. Compute initial basic feasible solution by North -West- Corner Method and Vogel's approximation method. Give your justification which method is most appropriate method?

| Plants | Sales Outlet |  |  | Capacity |
| :---: | :---: | :---: | :---: | :---: |
|  | A | B | C |  |
| X | 3 | 9 | 6 | 20 |
| Y | 4 | 4 | 6 | 40 |
| Z | 8 | 3 | 5 | 55 |
| Requirement | 40 | 50 | 30 | 115 |

7. What is the problem of decision making? How decision theory helps in this process?
8. a. What is meant by regret ? How is the concept useful in decision making.
b. A newspaper distributor assigns probabilities to the demand for a magazine as follows:

| Copies demanded | 1 | 2 | 3 | 4 |
| :--- | :--- | :---: | :---: | :--- |
| Probability | 0.4 | 0.3 | 0.2 | 0.1 |

# MASTER of BUSINESS ADMINISTRATION <br> SECOND SEMESTER <br> OPERATIONS RESEARCH <br> MBA -207 <br> (Use Separate Answer Scripts for Objective \& Descriptive) 

Duration : 3 hrs .
Full Marks: 70

## (PART-A: Objective)

Time : 20 min.
Marks : 20
Choose the correct answer from the following:

1. Operations Research is a $\qquad$ approach to problem solving for executives.
a. multi- disciplinary
pproach to problem solving
c. Intuitive
d. all of the above
2. For analyzing a problem, decision- makers should normally study
a. its qualitative aspects
b. its quantitative
c. both (a) and (b)
d. neither (a) nor (b)
3. Managerials decisions are based on
a. an evaluation of quantitative data
b. the use of quantitative
c. numbers produced by formal model
d. all of the above
4. A constraints in an LP model restricts
a. value of objective function
b. value of decision variable
c. use of the available resource
d. all of the above
5. Constraints in an LP model represents
a. Limitations
b. Requirements
c. balancing limitations and
d. all of the above requirements
6. The graphical method of LP problem uses
a. objective function equation
b. constraint equations
c. linear equations
d. all of the above
7. If two constraints do not intersect in the positive quadrant of the graph, then
a. the problem is infeasible
b. the solution is unbounded
c. none of the above
d. one of the constraint is redundant
8. For maximization LP model, the simplex is terminated when all values
a. $c j-z j \leq 0$
b. $c j-z j \geq 0$
c. $\mathrm{cj}-\mathrm{zj}=0$
d. $\mathrm{zj} \leq 0$
9. For a maximization problem the objective function coefficient for a slack variable is
a. +1
b. -1
c. 0
d. None of the above
10. An optimal assignment requires that the maximum number of lines that can be drawn through squares with zero opportunity cost be equal to the number of
a. rows or columns
b. rows and columns
c. rows + columns - 1
d. none of the above
(PART-B: Descriptive )
11. The purpose of dummy row or column in an assignment problem is to
a. obtain balance between total activities and total resources
b. prevent a solution from becoming degenerate
c. provides a means of representing a dummy problem
d. none of the above
12. If there were $n$ workers and $n$ jobs there would be
a. n! Solutions
b. ( $\mathrm{n}-1$ )! Solutions
c. (n!)n solutions
d. n solutions
13. When total supply is equal to the total demand in a transportation problem, the problem is said to be $\qquad$ —.
a. Unbalanced problem
b. Balanced problem
c. Maximization problem
d. None of these
14. Two person zero- sum game means that the sum of $\qquad$ to one player is Equal to the sum of the $\qquad$ to other player.
a. Gain, loss
d. None of these
15. A game whose decision value is zero is termed as $\qquad$ Game
a. Competitive
b. Fair
c. Both $a$ and $b$
d. None of these
16. The $\qquad$ in a pay off matrix is one which is the smallest value in its raw and the largest value in its column.
a. saddle point
b. Pure strategies
c. Odds
d. None of these
17. Leaving variable is selected with key row having positive $\qquad$ ratio in simplex method.
a. Maximum
b. Minimum
c. both a) and b)
d. None of these
18. The result of combinations of an act with each of the states of nature is the outcome and monetary gain or loss of each outcome is the $\qquad$
-.
a. Utility
b. possible profit
c. Both a) \& b)
d. None of these
19. Sometimes with reference to past records ,experience, probabilities to future events could be allotted in decision making under
a. Risk
b. Certainty
c. Uncertainty
d. None of these
20. In decision theory EVPI= $\qquad$
a. EPPI+ Maximum EMV b. EPPI- Maximum EMV
c. EPPI- Maximum EMV+ Average
d. None of these outcome

$$
==* * *==
$$

[Answer question no. 1 \& any four (4) from the rest]

1. a. Differentiate between pure strategies and mixed strategies in game theory.
b. Explain the principle of Dominance in game theory?
c. Solve the following game using Dominance Method.

| Player B |  | Player B |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{B}_{1}$ | $\mathrm{B}_{2}$ | $\mathrm{B}_{3}$ | $\mathrm{B}_{4}$ | $B_{4}$ |
|  | $\mathrm{A}_{1}$ | 8 | 10 | 9 | 14 | 14 |
|  | $\mathrm{A}_{2}$ | 10 | 11 | 8 | 12 | 12 |
|  | $\mathrm{A}_{3}$ | 13 | 12 | 14 | 13 | 13 |

2. What are the different approaches of OR Methodology? Explain the approaches with the help of diagram.
3. a. Distinguish between Slack variable and Surplus variable.
b. Solve the following LPP by Graphical Method.

Maximize $Z=6 X_{1}+8 X_{2}$ Profit function
Subject to $30 \mathrm{X}_{1}+20 \mathrm{X}_{2} \leq 50$ [Raw Material Constraints $5 X_{1}+10 X_{2} \leq 60$ [Labour constraints

Where $X_{1}, X_{2} \geq 0$
4. a. Explain the term linearity in relation to LP problem
b. A company produces two types of pen, say A and B. Pen A is a superior quality and pen is a lower quality. Profit on pens $A$ and $B$ is Rs. 5 and Rs. 3 per pen respectively. Raw Material required for each pen $A$ is twice as that for pen $B$. The supply of raw materials is sufficient only for 1000 pens of type B per day. Pen A requires a special clip and only 400 such clips are available per day. For pen B, only 700 clips are available per day. Formulate the problem as a linear programming model in order to maximize the profit and solve it by simplex method.

