SET

BACHELOR OF COMPUTER APPLICATION SECOND SEMESTER DISCRETE MATHEMATICS

BCA-204
[USE OMR SHEET FOR OBJECTIVE PART]

Duration: 1hr. 30 mins.

Objective

Time: 15 mins.

Marks: 10

Full Marks: 35

Choose the correct answer from the following:

 $1 \times 10 = 10$

- 1. Which is the associative law for the three sets A, B and C?
 - a. $(AUB)UC = AU(B \cup C)$
- b. $(A \cup B) \cup C = (A \cup B) \cap C$
- c. $(AUB)UC = (A \cap B)UC$
- d. None of these
- 2. Which one of the following is correct statement?
 - a. $N \subset Z \subset Q$

b. $Q \subset R$

c. Both a and b

- d. None of these
- 3. Which of the following is/are De Morgan laws?
 - a. $(A \cup B)^C = A^C \cap B^C$

b. $(A \cap B)^C = A^C \cup B^C$

c. Both a and b

- d. None of these
- 4. Which one of the following is Idempotent law?
 - a. $A \cup A = \emptyset$

b. $A \cup A = A$

c. $A \cup \emptyset = A$

- d. None of these
- 5. Which one of the following is identity law?
 - a. $A \cup A = \emptyset$

b. $\emptyset \cup \emptyset = A$

c. $A \cup \emptyset = A$

- d. None of these
- 6. Which of the following is/are Commutative laws from the following propositions?
 - a. $(p \lor q) \equiv (q \lor p)$

b. $(p \land q) \equiv (q \land p)$

c. Both a and b

- d. None of these
- 7. Which one of the following is correct equivalence involving Bi-conditional?
 - a. $p \leftrightarrow q = (p \rightarrow q) \Leftrightarrow (q \rightarrow p)$
- b. $p \leftrightarrow q = (p \rightarrow q) (q \rightarrow p)$
- c. $p \leftrightarrow q = (p \rightarrow q) + (q \rightarrow p)$
- d. $p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$
- 8. Which one of the following is correct equivalence involving Bi-conditional?
 - a. $\sim (p \leftrightarrow q) = p \leftrightarrow \sim q$

b. $\sim (p \leftrightarrow q) = \sim p \leftrightarrow q$

c. $\sim (p \leftrightarrow q) = p \land \sim q$

- d. $\sim (p \leftrightarrow q) = p \leftrightarrow q$
- 9. Degree of pendant vertex is:
 - a. 0

b. 1

c. 2

d. 3

- 10. Calculate the number edges of complete graph of 4 vertices.
 a. 2
 b. 4
 c. 5
 d. 6

Descriptive

Time: 1 hr. 15 mins. Marks: 25

[Answer question no.1 & any two (2) from the rest]

Construct the truth table from the following propositions and determine 5 whether it is tautologies or contradictions.

 $\{(p \lor q) \land (p \to r) \land (q \to r)\} \to r$

- a) Construct the truth table from the given propositions. 5
 - $\sim (q \to r) \bigwedge r \bigwedge (p \to q)$ b) Construct the truth table from the given propositions. 5 $(p \to (q \to s)) \bigwedge (\sim r \land p) \land q \implies r \to s$
- a) In a class of 35 students, 24 like to play cricket and 16 like to play 5 football. Also each students likes to play at least one of the two games. How many students like to play both cricket and football?
 - b) Without using truth table prove that: 5 $(\sim p \lor q) \land (p \land (p \land q)) = p \land q$
- 5 a) In a survey of 600 students in a school, 150 students were found to be taking tea and 225 taking coffee, 100 were taking both tea and coffee.
 - Find how many students were taking neither tea nor coffee? b) There are 200 individuals with a skin disorder, 120 had been exposed to the chemical A, 50 to chemical B and 30 to both the chemicals A and B. Find the numbers of individuals exposed to chemical A but
- 5. 2+2+1=5 a) Write down the definitions of the following:
 - i) Complete graph ii) Regular graph
 - iii) Degrees of a graph
 - b) Find the number of vertices, the number of edges and the degree of 5 each vertex from the following undirected graphs. Also verify the Handshaking theorem.

not chemical B?

5