SET

 $1 \times 20 = 20$

B.Sc. MATHEMATICS FOURTH SEMESTER COMPLEX ANALYSIS

BSM-941 IDMJ

[USE OMR FOR OBJECTIVE PART]

Full Marks: 70

Duration: 3 hrs.

(Objective)

Marks: 20 Time: 30 min.

Choose the correct answer from the following:

1. If $z_1 = 3 + 2i$ and $z_2 = -7 - i$ then $z_1 + z_2$ will be -5 + 2id. None of these

-4 + i

2. If $z_1 = 8 - 6i$ and $z_2 = 2i - 7$ then $z_1 - z_2$ will be 15 - 8i6+ia.

d. None of these

3. If $z_1 = 4 + 2i$ and $z_2 = 2 - 3i$ the $z_1 z_2$ will be

14 - 8i14 + 8ia. 8 + 14i8 - 14i

4. If $z_1 = 2 + i$ and $z_2 = 3 - 2i$ then $\frac{z_1}{z_2}$ will be

 $\frac{13}{4} + i \frac{13}{7}$ $\frac{4}{13} + i \frac{7}{13}$

d. None of these $\frac{7}{13} + i \frac{4}{13}$

5. Given the magnitude r=2 and amplitude $\theta=\frac{\pi}{3}$ of a complex number z=x+iy, z

will be given by $\sqrt{3}-i$ $1-\sqrt{3}i$ a.

 $1+\sqrt{3}i$ c.

6. If z = 3 - 4i then |z| is a. -5

7. For two complex numbers z_1 and z_2 , $|z_1 + z_2|$ is

b. greater than $|z_1| + |z_2|$ a. equal to $|z_1| + |z_2|$ d. Both (a) and (c) c. less than $|z_1| + |z_2|$

8. For $w = f(z) = \frac{1}{z}$, if z = 1 + i then w is

 $\frac{1}{2}$ $\frac{1}{2}$

9.	9. Let $w = f(z) = az$ where $= 2 + 3i$. Then $z = -i$ is mapped to w , where w is				
	a.	3+2i	b.	3-2i	
	C.	-3 + 2i	d.	-3 - 2i	
10.	10. Let $w = f(z) = az^2 + bz + c$ where $a = i, b = 1, c = -1$. Then $z = i$ is mapped to w ,				
	where w is				
	a.	1	b.	-1	
	C.	2	d.	-2	
		-	u.	-2	
11. If $f(z) = \frac{1}{z}$ then $f'(i)$ is equal to					
	a.	1	b.	-1	
	c.	0	d. None of these		
12. For an analytic complex function $w = f(z) = u + iv$ the Cauchy-Riemann equations					
	are				
	a.	$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$	b.	$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$	
	a.	$\partial x - \partial y$	о.	$\frac{\partial}{\partial y} = -\frac{\partial}{\partial x}$	
	c. Both (a) and (b)	d. None of (a) and (b)		
12	13. If $f(z) = 2z^3 - 1$ then $f'(1-i)$ is				
13.					
	a.	6 <i>i</i>	b.	-6i	
	c.	12 <i>i</i>	d.	-12i	
14. If $f(z) = u + iv$ is analytic then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ is					
	a.	≥ 0	b.	≤ 0	
	c.	= 0	d. None of these		
15. Let $f(z)$ be a complex function with					
(i) $\lim_{z \to 0} f(z) = l_1 \text{ as } z \to 0 \text{ along the real axis}$					
(ii) $\lim_{z \to 0} f(z) = l_2 \text{ as } z \to 0 \text{ along the imaginary axis.}$					
If $\frac{\lim f(z)}{z \to 0}$ exists then					
	a.	$l_1 \ge l_2$	b.	$l_1 = l_2$	
	c.	$l_1 \leq l_2$	d. None of these	$\epsilon_1 - \epsilon_2$	
16. Given any complex number z and any real number θ , $e^{i\theta}z$ geometrically means					
	rotation of z through θ in rotation of z through θ inclockwise				
	a. anticlockwise sense b. sense				
	change in mag	nitude of z without			
	c. rotation.		d. None of these		
17. Let $w = f(z)$ be analytic in a domain R of the complex plane. If C_1 and C_2 be two paths					
in R joining any two points a and b with $\oint_{C_1} f(z)dz = l_1$, $\oint_{C_2} f(z)dz = l_2$ then					
	a.	$l_1 \neq l_2$	b.	$l_1 = l_2$	
	c.	$l_1 = -l_2$	d. None of these		

2

USTM/COE/R-01

- 18. Let w = f(z) be analytic with f'(z) continuous in a domain R of the complex plane. For any simple closed curve C, $\oint_C f(z)dz$ is
 - a. equal to 0

b. less than 0

c. greater than 0

- d. None of these
- 19. Number of roots of $z^7 1 = 0$ is
 - a. less than 7

b. greater than 7

c. equal to 7

d. None of these

- 20. Conjugate of $\frac{1}{i}$ is
 - a. c.
- 2i
- d. None of these

(<u>Descriptive</u>)

Time: 2 hrs. 30 mins.

Marks: 50

[Answer question no.1 & any four (4) from the rest [

- 1. a. Let z_1 and z_2 denote the complex numbers 2 + i and 3 2irespectively. Find two real numbers x and y if
- 2+2+2+4 =10

(i)
$$z_1 z_2 = x + iy$$

(ii) $\frac{z_1}{z_2} = x + iy$

Hence plot z_1, z_2, z_1z_2 and $\frac{z_1}{z_2}$ on the complex plane.

- b. Given a complex number z interpret $ze^{i\alpha}$ geometrically, where α is real.
- a. Evaluate

3+3+4=1

(i)
$$\lim_{z\to 1+i} z^2 - 5z + 10$$

(ii)
$$\lim_{z\to 2+i} \frac{(2z+3)(z-1)}{z^2-2z+4}$$

3

- **b.** Using the property of complex numbers find out all the fifth roots of 1.
- 3. a. Let $w = f(z) = z^2$ where z is a complex number of the form z = x + iy, x and y being real. Find the values of w = u + iv corresponding to

(i)
$$z = -2 + i$$

(ii) $z = 1 - 3i$

Also demonstrate graphically the correspondence of points from *z*-plane to *w*-plane.

- **b.** Find $\lim_{z\to 0} \frac{\bar{z}}{z}$ when (i) $z\to 0$ along real axis. (ii) $z\to 0$ along imaginary axis Hence show that $\lim_{z\to 0} \frac{\bar{z}}{z}$ does not exist.
- 4. **a.** If w = f(z) be a function of complex numbers defined in a domain D then define the derivatives f'(z) at $z = z_0 \in D$. Hence find $f'(z_0)$ if $f(z) = z^3 2z$.
 - **b.** When is a function w = f(z) said to be analytic? Show that $f(z) = \bar{z}$ is nowhere analytic.
- 5. **a.** If f(z) = u + iv be analytic then show that the real function u = u(x, y) and v = v(x, y) satisfy Cauchy Riemann equations i.e. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
 - **b.** What are harmonic functions? Show that the real and imaginary parts u and v of an analytic function f(z) = u + iv are harmonic?
- 6. a. Prove that $u = e^{-x}(x \sin y y \cos y)$ is harmonic. 5+5=10
 - **b.** In reference to part (a) of the question, find a function v such that f(z) = u + iv becomes an analytic function.

- 7. **a.** Let f(z) be continuous at all points of a rectifiable curve C, define line integral $\int_a^b f(z) \ dz$ for f(z) from a point a to another point b on C.
- 5+5=10
- **b.** Evaluate the line integral $\int_{(0,3)}^{(2,4)} (2y+x^2) dx + (3x-y) dy$ along the straight lines from (0,3) to (2,3) and then from (2,3) to (2,4).
- 8. a. If f(z) is analytic in a simply connected region R prove that the line integral $\int_a^b f(z) dz$ is independent of the path joining any two points a and b in R.
 - **b.** State Green's theorem in the plane. Verify Green's theorem for the integral $\oint_C (2y x^2) dx + (x + y^2) dy$ where C is the closed curve between the parabolas $y = x^2$ and $x = y^2$.

== ***==