REV-01 MSC/69/35/40

M.Sc. CHEMISTRY FOURTH SEMESTER MATERIAL CHEMISTRY & THERMODYNAMICS

[USE OMR FOR OBJECTIVE PART]

MSC-401

Full Marks: 70

Duration: 3 hrs.

Time: 30 min.

Objective

Marks: 20

2024/05

SET

B

Choose the correct answer from the following:

1X20 = 20

- A process is carried out t constant volume and at a constant entropy. It will be spontaneous if
 - a. $\Delta G < 0$

b. $\Delta H < 0$

c. $\Delta U < 0$

- d. $\Delta A < 0$
- 2. Polymer nanocomposites have
 - Excellent mechanical properties and
 - low thermal stability
 - Poor mechanical properties and
 - thermal stability

- Excellent mechanical properties and high thermal stability
- d. Poor properties than neat polymer
- 3. The surface plasmon resonance shifts to lower energies due to
 - a. Dilution

b. Aggregation

c. Oxidation

- d. Phosphorescence
- 4. The driving force behind non-equilibrium thermodynamic processes is
 - a. Heat flow

b. Entropy

c. Equilibrium

- d. Chemical potential
- 5. Graphene nanosheets and carbon dots are
 - a. 0D and 3D nanomaterials
- b. 0D and 1D nanomaterials d. 2D and 0D nanomaterials
- c. 2D and 1D nanomaterials
- 6. Entropy production in a non-equilibrium system indicates
 - a. Decrease in disorder

b. Increase in order

c. Creation of a gradient

- d. Maintenance of equilibrium
- 7. The concept of "local equilibrium" in non-equilibrium thermodynamics implies
 - a. Uniform distribution of energy
- Constant temperature throughout the system
- Spatial variation in thermodynamic properties
- d. Absence of entropy production
- 8. In non-equilibrium systems, the Onsager reciprocity relations describe
 - a. Energy conservation

b. Entropy production

c. Heat transfer

d. Coupled transport processes

9.	The "flux-force" relations in non-equilibrium thermodynamics establish a connectibetween				
	a. Entropy and temperature	b.	Chemical potential and concentration gradient		
	c. Enthalpy and pressure	d.	Volume and temperature change		
10.	Which of the following smart materials is used as a sensor				
	a. Active SM	-	Piezoelectric SM		
	c. Passive SM		Both (a) and (b)		
11.	Which one of the following is not a property of smart material:				
	a. Villary effectc. Magneto-optic effect		Photostriction effect None of them		
		u.	None of them		
12.	Pervoskites is an example of a. Direct piezoelectric effect	b	Reverse piezoelectric effect		
	c. Both (a) and (b)		None of them		
12					
15.	A smart material that converts mechanical a. Joule effect of magnetization		Villary effect		
	c. Converse Effect		Direct Effect		
14	Cobalt ferrite is an example of				
		· b.	Electrostrictive material		
	c. Thermoelectric material	d.	Both (a) and (b)		
15	For a closed system, in the absence of non PV work, the correct statement is				
	a. dU=T.dS-P.dV		dG=V.dP+S.dT		
	c. dH=T.dS-P.dV	d.	dH=T.dS-P.dV		
16.	For a system of variable composition, the internal energy depends on				
	a. Entropy		Volume		
	c. Moles	d.	All of the above		
17.	The molar chemical potential is given by the equation				
	a. $\partial U/\partial S$		∂U/∂n		
	c. $\partial U/\partial V$	d.	All of the above		
18.	The chemical potential μ of a pure substance is equal to				
	a. Molar Gibbs energy	b.	Entropy		
	c. Internal Energy.	d.	All of the above		
19.	Composition of Romanian paint is				
	Gold nanoparticles dispersed in	b	Gold nanofibers dispersed in solv		
	solvent		conditional dispersed in solv		
	c. having different colors	d.	Both (a) and (c)		
20.	Ostwald ripening process occurs because larger particles are				
	a. Less agglomerates		Optically stable		
	c. More energetically favored	d.	Thermally stable		

(<u>Descriptive</u>)

Time: 2 hrs. 30 mins. Marks:50

1. a. Define the term "Joule effect of magnetization".

[Answer question no.1 & any four (4) from the rest]

	b. What is fugacity? Write the relation of fugacity with molar Gibbs						
	energy. c. Define the term "surface plasmon resonance".						
	d. Differentiate between reversible and irreversible processes in						
	thermodynamics.						
2.	a. Match the following column:		2+2+2+4				
	Column 1	Column 2	= 10				
	(I) Data Acquisition	(i) Muscles					
	(II) Data Instructions	(ii) Sensory nerves					
	(III) Data Transmission	(iii) Brain					
	(IV) Action Devices	(iv) Motor nerves					
	(V) Command and Control Unit	(v)Tactile sensing					
	b. Discuss the physical interpretation of the dependence of the Gibbs energy on the temperature and pressure.						
	c. Define the term Converse effect with one example.						
	d. Explain the concept of entropy production in non-equilibrium						
	thermodynamics and calculate the rate of entropy production						
	by giving a suitable example.						
3.	a. Write two characteristics of active example.	2+2+2+3 +1=10					
	b. Derive the Gibbs energy of mixing for two perfect gases.						
	c. Write two application of magneto-active polymer based smart material.						
	d. Match the following						
	Column 1	Column 2					
	(I) Gold nanoparticles	(i) crystalline TiO ₂					
	(II) Gratzel cell	(ii) Nanoclay					
	(III) Maya Blue microscopy technique	(iii) Scanning probe					
	(IV) Transmission electron microscop	a (iv) Buret Schifrin Method					
	(V) Scanning tunnelling microscope	e (iv) Burst Schifrin Method (v) Scanning electron					
	microscopy Technique	(1) Scaraining electron					
		3	USTM/COE/R-01				

2+3+2+3

,			
	e.	Define is quantum confinement?	
4.	a.	Fill in the blanks:	
		(i)Terfenol-D is an example of	4+3+3=
		(ii) At lower temperature Shape memory alloy is stable in	
		phase.	
		(iii) Optical fibers is an example of smart materials(iv) Pyroelectric smart material is an example of active smart materials due to exchange.	
	b.		
		importance of this equation?	
	c.	Describe the Onsager reciprocal relations and their significance in non-equilibrium thermodynamics	
5.	a.	Define the term Converse effect with one example.	2+3+2+
	b.	Explain the different types of transitions associated with CdSe based semiconductors.	+1=1
	c.	From the relation, $dG = VdP - SdT$, derive the equation $(\partial S/\partial P)_T = -(\partial S/\partial P)_P$	
	d.	Discuss the concept of local equilibrium and its relevance in the	
		context of non-equilibrium thermodynamics.	
	e.	What is flux and forces in non-equilibrium thermodynamics?	
6.	a.	Establish the relation,	2+2+2+
		dG = VdP - SdT	+2=1
	b.	Write the full form of following smart materials:	
		(i) PMN (ii) PEO-b-PLL	
	c.	Mention two differences between interband and intraband transitions.	
	d.	Write the criterion of equilibrium at constant temperature and pressure.	
	e.	How do you classify the shape memory alloy?	
7.	a.	What is Chemical Potential? Write the relations how the	2+2+4+
		chemical potential is related to internal energy and enthalpy?	=1

b. Write down the name of different types of photovoltaic cell

Write down the advantages of solution-based techniques.
 Mention the basic stages involved in this technique for the

smart materials with one example for each.

preparation of nanomaterials.

- **d.** Discuss the importance of the second law of thermodynamics in understanding non-equilibrium systems.
- 8. a. How many types of mesoporous structured silica nanomaterials can be fabricated from M41S. Which surfactant is a better choice for the synthesis of MCM-41?

4+2+4 =10

- **b.** Explain the Curiee-Prigogine principle in non-equilibrium thermodynamics.
- c. Fill up the blanks
 - i. Photolithography is one form of ----- approach.
 - ii. To prevent Ostwald ripening ----- are added that help to stabilize the particles against growth and dissolution.
 - In the -----process chemical species are delivered sequentially to a substrate on which a single monolayer deposits.
 - iv. The ----- nanoparticles in the glass matrix generate the ruby red colour in the windows.

== *** = =