M.SC. MATHEMATICS FIRST SEMESTER REAL ANALYSIS

MSM - 101 [SPECIAL REPEAT]

JUSE OMR FOR OBJECTIVE PART

Duration: 3 hrs.

Time: 30 min.

Objective)

Full Marks: 70

Marks: 20

2024/07

SET

Choose the correct answer from the following:

1X20 = 20

1. Let S(x,r) be an open sphere in a discrete metric space (X,\mathcal{D}) . Then S(x,r) is a singleton set if

a.
$$0 < r < 1$$

b.
$$0 < r \le 1$$

a. 0 < r < 1c. r ≥ 1

d, r > 1

2. Consider \mathbb{R} , the set of real numbers with usual metric d on \mathbb{R} given by d(x,y) =|x-y| for $x,y \in \mathbb{R}$. Then $S\left(-1,\frac{3}{2}\right)$ is equal to

a.
$$\left] -\frac{5}{2}, \frac{1}{2} \right]$$

b.
$$\left[-\frac{5}{2}, \frac{1}{2} \right]$$

d. $\left[-\frac{5}{2}, \frac{1}{2} \right]$

a.
$$\left] -\frac{5}{2}, \frac{1}{2} \right]$$

c. $\left[-\frac{5}{2}, \frac{1}{2} \right]$

3. Let (X, d) be any metric space, and $A \subset X$. Then the interior of A is the

- Intersection of all open sets contained a. in A.
- b. Intersection of all open sets containing A.
- c. Union of all open sets containing A.
- d. Union of all open sets contained in A.

4. Let (X, d) be any metric space, and $A \subset X$. Then the closure of A is the

- Intersection of all closed sets a. contained in A.
- b. Union of all closed sets contained A.
- c. Intersection of all closed sets containing
- d. Union of all closed sets containing in A.

5. Let $\langle x_n \rangle$ be any sequence in a metric space (X, d). If $\langle x_n \rangle$ converges then

a, the sequence is Cauchy

- b, the sequence is not Cauchy
- c. the sequence is not bounded
- d. None of these is true

6. Let $\sum f_n(x)$ be a series of continuous functions defined on [a,b] for each n, converging pointwise to the sum function f. Then

- f is continuous on [a, b]
- b. f is discontinuous on some point in [a, b]
- c. f may or may not be continuous on [a,b]
- d. None of these

7.	Let a sequence $\{f_n\}$ of real functions converges uniformly to a real function f so that
	given $\epsilon > 0$, there exists a positive integer m so that $ f_n(x) - f(x) < \epsilon$, $\forall n \ge m$ for
	$x \in [a, b]$. Then

a.
$$m$$
 depends on $x \in [a, b]$ and not on ϵ

c.
$$m$$
 is independent of both ϵ and $x \in [a, b]$

b.
$$m$$
 depends on ϵ and not on $x \in [a, b]$

$$x \in [a]$$

8. Let
$$< f_n >$$
 be a sequence of functions such that $\lim_{n \to x} f_n(x) = f(x), \forall x \in [a, b]$ and let $M_n = \sup_{x \in [a, b]} |f_n(x) - f(x)|$

a.
$$M_n \to +\infty$$
 as $n \to \infty$
c. $M_n \to -\infty$ as $n \to \infty$

b.
$$M_n \to 0$$
 as $n \to \infty$

d.
$$M_n$$
 is bounded for all n

9. The sequence
$$< f_n >$$
 of functions where $f_n(x) = x^n$ defined on [0, 1] is convergent to the limit function f where

a.
$$f(x) = 1$$
, $\forall x \in [0, 1]$
c. $f(x) = \begin{cases} 1, & \text{if } 0 < x \le 1 \\ 0, & \text{if } x = 0 \end{cases}$

b.
$$f(x) = 0, \forall x \in [0, 1]$$

b.
$$f(x) = 0$$
, $\forall x \in [0, 1]$
d. $f(x) = \begin{cases} 0, & \text{if } 0 \le x < 1 \\ 1, & \text{if } x = 1 \end{cases}$

10. Consider the series
$$\sum f_n$$
 of functions where $f_n(x) = \frac{x^2}{(1+x^2)^n}$, $x \in \mathbb{R}$. The series converges to a sum function f given by

a.
$$f(x) = \begin{cases} 0, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

c. $f(x) = 0, x \in \mathbb{R}$

b.
$$f(x) = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$\mathbf{d.} \qquad \begin{array}{ll} (0, & x = 0) \\ f(x) = 1, & x \in \mathbb{R} \end{array}$$

11. For any interval
$$[a, b]$$
 in \mathbb{R} the length of $[a, b]$ is

a.
$$a+b$$

$$c.b-a$$

$$\mathbf{b}$$
. $a - b$

12. If
$$G$$
 is any open set in \mathbb{R} then

- G is union of a countable class of open intervals.
- G is union of a countable disjoint class c. of open intervals
- *G* is union of a disjoint class of open
- d. None of the above

13. For any set
$$A \subseteq [a, b]$$
, the outer measure m^*A is defined by

Sup l(F), where the supremum is

- a. taken over the length of all open sets $F \supseteq A$.
- Inf l(F), where the infimum is taken c. over the length of all open sets $F \subseteq A$.

b. Inf
$$l(F)$$
, where the infimum is taken over the length of all open sets $F \supseteq A$.

, where the infimum is taken elength of all open sets
$$F \subseteq A$$

14. For any two subsets
$$A_1$$
 and A_2 in $[a, b]$

a.
$$m^*A_1 + m^*A_2 \le m^*(A_1 \cup A_2) + m^*(A_1 \cap A_2)$$

b.
$$m^*A_1 + m^*A_2 \ge m^*(A_1 \cup A_2) + m^*(A_1 \cap A_2)$$

$$m, A_1 + m, A_2 \ge m, (A_1 \cup A_2) + m, (A_1 \cap A_2)$$

$$m : M_1 + m : A_2 \ge m : (A_1 \cup A_2) + m : (A_1 \cap A_2)$$

15. If A be any subset of [a, b] and m_*A is the inner measure of A then given $\mathcal{E} > 0$, there is a closed set $G \subset A$ such that

a.
$$m, A - \mathcal{E} < l(G)$$

b.
$$m.A + \mathcal{E} < l(G)$$

c.
$$m.A - \mathcal{E} > l(G)$$

16. The radius of convergence of the power series $1 + 2x + 3x^2 + 4x^3 + \cdots$ is

b.
$$\frac{1}{2}$$
 d. 2

- 17. The power series $x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ is **a.** Convergent at x = 0 only.
- b. Everywhere Convergent

c. Nowhere Convergent

- d. None of these
- 18. The radius of convergence R of a power series $\sum a_n x^n$ is given by

a.
$$R = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$$

$$\mathbf{b}.\ R = \frac{1}{\lim_{n \to \infty} |a_n|^{\frac{1}{n}}}$$

$$\mathfrak{c.} \ R = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|^{\frac{1}{n}}$$

$$\mathbf{d.} R = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

19. The interval of convergence of the power series $1 + x^2 + x^4 + x^6 + \cdots$ is

a.
$$-1 \le x < 1$$

b.
$$-1 < x \le 1$$

c.
$$-1 < x < 1$$

d.
$$-1 \le x \le 1$$

.20. The radius of convergence of the power series $x + \frac{x^2}{2^2} + \frac{2!}{3^3}x^3 + \frac{3!}{4^4}x^4 + \cdots$

a.
$$\frac{1}{-}$$

Descriptive

Time: 2 hrs. 30 min.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

1. a. Let (X, d) be any metric space. Define a metric d_1 on X by

5+2+1+ 2=10

$$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}, x, y \in X$$

Show that (X, d_1) is again a metric space.

b. Consider the sequence of the functions $\langle f_n \rangle$, where

$$f_n(x) = \frac{\sin nx}{\sqrt{x}}, x \in \mathbb{R}$$

Is $< f_n >$ convergent? If so, find the limit function f for $< f_n >$. Examine the convergence of $< f_n >$, where $f_n(x) = \frac{d}{dx} f_n(x)$, $x \in \mathbb{R}$.

2. a. When is a sequence $\langle x_n \rangle$ said to be convergent in a metric space (X, d)? Prove that a convergent sequence in a metric space is always Cauchy.

1+3+1+ 3+2=10

Give an example to show that a Cauchy sequence in a metric space (X, d) may not be convergent.

b. Consider the series of functions $\sum f_n$, where $f_n(x) = \frac{x^2}{(1+x^2)^n}$, $x \in \mathbb{R}$

Examine the convergence of $\sum f_n$ and find the sum function f provided $\sum f_n$ is convergent. What is your observation on continuity of each term f_n and that of the sum function f?

3. a. Prove Cauchy's criterion for uniform convergence of a series of functions $\sum f_n$ viz-

5+2+1+ 2=10

A series of functions $\sum f_n$ defined on an interval I = [a, b] converges uniformly if and only if for $\mathcal{E} > 0$, and for all $x \in [a, b]$, there exists a positive integer m such that

$$|f_{n+1}(x) + f_{n+2}(x) + \dots + f_{n+p}(x)| < E, \forall n \ge m, p \ge 1$$

b. Examine the convergence of the sequence of function $< f_n >$ where $f_n(x) = \frac{nx}{1+n^2x^2}$, $x \in \mathbb{R}$

Find the limit function f in case it is convergent. Also, in this case establish whether the convergence of the sequence is pointwise or uniform.

- 4. **a.** Prove Weierstrass's M-test viz A series of function $\sum f_n$ will converge uniformly and absolutely on [a, b] if there is a convergent series $\sum M_n$ of positive numbers such that for all $x \in [a, b]$, $|f_n(x)| \leq M_n \quad \forall n$.
 - **b.** Show that the series $\sum \frac{x}{n^p + x^2 n^q}$ converges uniformly over any finite interval [a, b] for 0 , <math>p + q > 2.
- 5. a. Let $\sum f_n$ be a sequence of functions converging uniformly to a limit function f in interval [a, b]. If f_n is continuous for each n in [a, b], then prove that the limit f is also continuous in [a, b].
 - **b.** Show that the series $\sum f_n$, where $f_n(x) = \frac{x^4}{(1+x^4)^{n-1}}$ is not uniformly continuous though it is pointwise convergent in [0,1].
- 6. **a.** Define radius of convergence of a power series $\sum_{n=0}^{\infty} a_n x^n$. Write a formula to find the radius of convergence R for $\sum a_n x^n$. Hence find the radius of convergence for the power series $1 + 2x + 3x^2 + 4x^3 + \cdots$
 - **b.** If a power series $\sum a_n x^n$ converges for $x = x_0$ then prove that it is absolutely convergent for every $x = x_1$ where $|x_1| < |x_0|$
- 7. **a.** Prove Abel's theorem on uniform convergence of a power series $\sum a_n x^n$ viz –

 If a power series $\sum a_n x^n$ converges at end point x = R of the interval]-R, R[then it is uniformly convergent in the closed interval [0, R].

b. Show that
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, -1 \le x \le 1$$
. Also show that $\frac{1}{2} (\tan^{-1} x)^2 = \frac{x^2}{2} - \left(1 + \frac{1}{3}\right) \frac{x^4}{4} + \left(1 + \frac{1}{3} + \frac{1}{5}\right) \frac{x^6}{6} - \dots, -1 \le x \le 1$

- 8. a. Define outer measure and inner measure of a set $A \subset [a, b]$. 2+3+2+ Hence show that $m_*A \le m^*A$
 - **b.** Prove that If A_1 and A_2 are measurable sets in [a, b] then both $A_1 \cup A_2$ and $A_1 \cap A_2$ are also measurable and $mA_1 + mA_2 = m(A_1 \cup A_2) + m(A_1 \cap A_2)$

== *** = =