SET

Marks: 20

 $1 \times 20 = 20$

M.SC. MATHEMATICS SECOND SEMESTER TOPOLOGY & FUNCTIONAL ANALYSIS MSM – 202

USE OMR FOR OBJECTIVE PARTI

Duration: 3 hrs.

Full Marks: 70

Time: 30 min.

Choose the correct answer from the following:

1. Consider the following collection on $X = \{a, b, c, d, e\}$

 $\tau_1 = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ $\tau_2 = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$ $\tau_3 = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{a, b, d, e\}\}$

- a. τ_1 , τ_2 and τ_3 all are topology on X.
- c. Only τ_1 is topology on X.
- b. Only τ_2 and τ_3 are topology on X.
- d. None of the above.
- 2. Let $\Im = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$ be a topology on $X = \{a, b, c, d, e\}$ and let $A = \{a, d, e\}$. Then \Im_A is equal to
 - a. $\{\phi, A, \{a\}, \{d\}, \{a, d\}, \{d, e\}\}$
- b. $\{\phi, A, \{a\}, \{d\}, \{c, d\}, \{a, e\}\}$
- c. $\{\phi, A, \{a\}, \{d\}, \{a, d\}, \{c, d\}\}$
- d. None of these
- 3. Let (X, T_d) be a discrete topological space. Then which of the followings is/are true for T_d
 - a. $\{\{x\} : \text{for some } x \in X\} \text{ is a base }$
- b. $\{\{x\} : \forall x \in X\}$ is not a base

c. $\{\{x\}: \forall x \in X\}$ is a base

- d. None of these
- Let T denotes the usual topology on the real line ℝ. The subspace topology T_N defined on the set of natural number is
 - a. Equal to the discrete topology
 - c. Neither discrete nor indiscrete
- b. Equal to the indiscrete topology
- d. Can not define
- 5. Which of the following topological space is first countable?
 - a. Indiscrete Topology on ℝ
 - c. Both (a) and (b) are true
- b. Usual Topology on R
- d. Neither (a) nor (b) is true
- 6. Which of the following is/are always true?
 - a. Discrete topological space (X, \mathcal{D}) is always first countable.
 - c. Discrete topological space (X, \mathcal{D}) is first countable iff X is countable.
- b. Discrete topological space (X, \mathcal{D}) is first countable iff X is finite.
- d. Discrete topological space (X, \mathcal{D}) is not first countable.

- 7. Which of the following is/are true?
 - Discrete topological space is compact but not connected.
 - b. Discrete topological space is connected but not compact.
 - c. Discrete topological space is both compact and connected.
 - d. Discrete topological space is neither compact nor connected.
- 8. Which of the following is/are true?
 - Real line with usual topology is T_1 space but not T_2 .
 - **a.** Discrete topological space is T_2 -space. **b.** Co-finite topological space is T_2 -space
 - d. None of these

- 9. If $X = \{a, b, c, d\}$ then which of the following topology is/are connected?
 - $\tau = p(X)$ a.
- b. $\tau = \{\phi, X, \{a\}\}$ d. None of these.
- $\tau = \{\phi, \{a,b\}, \{c,d\}, X\}$
- **10.** In a normed space $(X, \|\cdot\|)$ a. All subsets are both open and closed.
 - b. No subset of X is both open and closed.
 - c. Subsets of X which are both open and closed are the empty set ϕ and the whole space X only

 - d. None of these.
- 11. For a normed linear space X over the field \mathbb{R} of real numbers consider the following subspaces

B: the subspace of all bounded sequences in X

C: the subspace of all convergent sequences in X

C₀: the subspace of all sequences in *X* converging to zero.

Then

- a. B is a subspace of C
- b. C is a subspace of C₀
- c. B is a subspace of Co
- d. Co is a subspace of C
- 12. Let *X* be a normed space over the field *F* of real or complex numbers. Let *M* be a closed subspace of X so that under a suitable norm the quotient space $\frac{X}{M}$ is also a normed space over *F*. Then $\frac{X}{M}$ is complete if
 - a. X is complete.

b. *M* is complete as a subspace of *X*

c. X is convex in X

- d. Both (b) and (c) are true.
- 13. In a normed space $(X, \|\cdot\|)$ for any $x, y \in X$, $\|\|x\| \|y\|\|$ is
 - a. less than ||x y||
- b. equal to ||x y||
- c. greater than ||x y||
- d. Both (a) and (b) are true
- 14. Let ℓ_2^p denote the set of all ordered pairs of real numbers of the form $x = (x_1, x_2)$, $x_1, x_2 \in \mathbb{R}$. A norm $\|\cdot\|_p$ is defined on ℓ_2^p as $\|x\|_p = (|x_1|^p + |x_2|^p)^{\frac{1}{p}}$. Then $(\ell_2^p, \|\cdot\|_p)$ is a
 - a.
- 0
- b.
- 0

c.

normed space if

- 0
- $1 \le p < \infty$

15.	Let $B(X,Y)$ denote the linear space of all bounded linear operators from a normed space X into another normed space Y . If $\ \cdot\ $ is defined on $B(X,Y)$ by				
	$\parallel T \parallel = \sup \left\{ \parallel T(x) \parallel_{Y} : x \in X, \parallel x \parallel_{X} \le 1 \right\}$ then $(B(X,Y), \parallel \cdot \parallel)$ is Banach space if				
	a. X is a Banac			Y is a Banach space None of these	
16.	. Two norms $\ \cdot\ $ and $\ \cdot\ '$ on the same linear map $I:(X,\ \cdot\)\to (X,\ \cdot\ ')$ is			$\mathbf{e} X$ will be equivalent if the identity	
	a. isometric		b.	an isomorphism	
	c. a homeomo	rphism	d.	both isomorphism and homeomorphism	
17.	Let X and Y be two normed spaces of dimensions m and n respectively. X is topologically isomorphic to Y if				
	a. c.	m < n m > n	b. d.	m = n None of the above	
18.	 8. Let <i>X</i> and <i>Y</i> be normed spaces over the same field <i>F</i> (= ℝ or ℂ). Let <i>T</i> : <i>X</i> → <i>Y</i> be a linear operator with the property (i) <i>T</i> is bounded (ii) <i>T</i> maps every bounded set in <i>X</i> onto bounded set in <i>Y</i> 				
	then a.	$(i) \Rightarrow (ii)$	b.	$(ii) \Rightarrow (i)$	
	c. Both (a) and			None of (a) and (b) holds	
19.	Let <i>X</i> and <i>Y</i> be normed spaces over the same operator with the property (i) <i>T</i> is continuous at the origin (ii) <i>T</i> is continuous on <i>X</i> then			led $F (= \mathbb{R} \text{ or } \mathbb{C})$. Let $T: X \to Y$ be a lin	near
	a.	$(i) \Rightarrow (ii)$	b.	$(ii) \Rightarrow (i)$	
	c. Both (a) and	(b) hold	d.	None (a) and (b) holds	
20. Which of the following is/are open cover of discrete topological space (X, \mathbb{D}) , where $X = \{a, b, c\}$?					
	a.	$\{\{a\},\{b\},\{c\}\}$	b.	(
	c.	$\{\phi, X, \{a\}\}$	d.	All the above	
			3	IISTM/	COF/R-01

Descriptive

Time: 2 hrs. 30 mins.

Marks:50

[Answer question no.1 & any four (4) from the rest]

1. a. Define Continuity of a function f from a topological space (X, τ) 1+2+2+ into another topological space (Y, τ^*) . Consider (X, τ) and (Y, τ^*) where

5=10

 $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}\}$ and $Y = \{p, q, r, s\}, \tau^* = \{Y, \phi, \{p\}, \{q\}, \{p, q\}, \{q, r, s\}\}$ Examine if the function $f: X \to Y$ and $g: X \to Y$ as defined below are continuous or not

f(a) = q, f(b) = r, f(c) = s, f(d) = rand g(a) = p, g(b) = p, g(c) = r, g(d) = s

- **b.** Let *p* be a real number such that $1 \le p < \infty$. Consider the normed space ℓ_n^p of all n-tuples $x = (x_1, x_2, \dots, x_n)$ of scalars under the norm defined by $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$ Show that $(\ell_n^p, ||\cdot||_p)$ is a Banach space.
- 2. a. Let *X* be a set and let $\tau_f = \{U \subseteq X : X U \text{ is either finite or X}\}$. Prove 4+4+2 =10 that (X, τ_f) is a topological space.
 - **b.** Show that $-A = (0,1) \subseteq \mathbb{R}$ with usual topology is not compact.
 - **c.** Show that- The real line \mathbb{R} with lower limit topology τ_{ℓ} is not connected space.
- 3. a. Show that the lower limit topology on \mathbb{R} is finer than the usual 5+5=10 topology on R. Also, show that the lower limit topological space is not second countable.
 - **b.** Let (X, τ_1) and (Y, τ_2) be two topological spaces. Prove that If A is a subspace of X and B is a subspace of Y, then the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $X \times Y$.ls the result true for order topology and subspace topology same? Justify your answer.

USTM/COE/R-01

- 4. Prove that For a topological space (X, τ) the following statements are equivalent:
 - (i) The space X is a T_1 -space.
 - (ii) For any $x \in X$, the singleton set $\{x\}$ is closed.
 - (iii) Every finite subset of X is closed.
 - (iv) The topology τ is stronger than the co-finite topology on X.
- 5. a. Construct an open cover of a topological space (X, τ) , where $X = \{a, b, c, d\}$ and 3+2+5
 - (i) $\tau = p(X)$
 - (ii) $\tau = \{\phi, X\}$
 - (iii) $\tau = {\phi, {a}, {b}, {a, b}, {c, d}, X}$
 - **b.** Show that $-\mathcal{A} = \{(-n, n) : n \in \mathbb{N}\}$ is an open cover of the real line with usual topology. Find an open subcover for \mathcal{A} .
 - c. Let *X* be any normed vector space over a field *F*. For any $x, y \in X$, show that $|||x|| ||y||| \le ||x y||$.
- 6. a. Let $(X, \|\cdot\|)$ be a normed space over a field F where F is \mathbb{R} or \mathbb{C} . If $u_n \to u$ and $\lambda_n \to \lambda$ then prove that $\lambda_n u_n \to \lambda u$ as $n \to \infty$.
 - **b.** Prove that a normed space $(X, \|\cdot\|)$ is homeomorphic to the open ball $\{x \in X : \|x\| < 1\}$.
- 7. a. Let *Y* be a subspace of a Banach space *X*. If *Y* is closed then prove that *Y* is complete *Y* is also a Banach space.
 - b. When is a linear operator T: X → Y from a normed space X to another normed space Y said to be bounded?
 Prove that a linear operator T: X → Y from a normed space X into a normed space Y is continuous if and only if T is bounded.
- 8. a. For a normed space X let B(X) denote the set of all bounded linear operators on X. If $S, T \in B(X)$, then $S T \in B(x)$ Also, establish the inequality $||ST|| \le ||S|| ||T||$

5

10

b. When are two normed spaces said to be topologically isomorphic? If X and Y are two normed spaces over a filed $F (= \mathbb{R} \text{ or } \mathbb{C})$ then a linear operator $T: X \to Y$ will be a topological isomorphism if and only if there exist constants $k_1, k_2 > 0$ such that $k_1 \parallel x \parallel_X \leq \parallel T(x) \parallel_Y \leq k_2 \parallel x \parallel_X \quad \forall x \in X$ Where $\|\cdot\|_X$ and $\|\cdot\|_Y$ are respectively norms on X and Y.

== *** = =

USTM/COE/R-01