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dz E . ;
The value of §C e where C is any simple closed curve and Z = d is

a. 0 DRE]
c. 27xi d. None

The singularity at z = 2 of f(:) = ¢ is called

a. Pole b. Essential singularity
¢. Removable singularity d. None

A continuous arc without multiple points is called a

a. Jordan curve b. Continuous arc

c. Contour d. Rectifiable arc

dz N
The value of J--—- where C is the circle with centre at the origin and radius r is

( -
a. logr b. i
- i
¢ 27i d. —
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A continuous funclion /(:) over a continuous rectifiable curve C is
a. Differentiable b. Integrable
¢. Meromorphic d. None
Every analytic function in a simply-connected domain
a. Possesses a definite integral b. Possesses an indefinite integral
Doesnot possesses an indefini
! p es an indefinite 5 None
integral

Polynomial of degree n has a pole of order n al
a. Zero b. Infinity
¢. CurveC d. Anywhere

A function whose only singularities in the enlire complex plane are poles, is called
a. Analytic b. Homomorphic
¢. Meromorphic d. Regular

Function € has at z =0
a. Anisolated singularity b. A pole
¢. An infinite point d. Anisolated essential singularity
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[ Answer question no.1 & any four (4) from the rest |

Using Cauchy integral formula calculate the integrals:

h
a. I—————COS (zﬂz)dz where C is circle |z| =2
o z(z +I)

b, ;'.(:_-‘jz'% where C is the ellipse |2.' —2|+[3+ 2[ =6.

é e** dz
e (z+1)*

where C s the circle | zl =3.

Verify Green's theorem in the plane for §. x? ydx + (y* — xy®) dy

where C is the boundary of the region enclosed by the circles
¥+ =4.x+y* =16.

I 3
a. Show that u = Elog (.\'2 +y') is a harmonic function and find

its harmonic conjugate. Also find the analytic function in terms of
Zi

b. Show that an analytic function with constant modulus is constant.

Prove that if _f(z) is continuous in a simply connected region R

and 9Sc f(z)dz = 0 around every simple closed curve C in R, and

then f(z) is analytic in R.

3+4+3
=10

10
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