B.Sc. CHEMISTRY FIRST SEMESTER PHYSICAL CHEMISTRY BSC – 102 [SPECIAL REPEAT] (ISE OMR FOR OBJECTIVE PART)

SET

2024/07

Duration: 3 hrs.

Objective

Time: 30 min.

Marks: 20

Full Marks: 70

Choose the correct answer from the following: 1X20=20

- 1. Phenolphthalein changes color in
 - a. Acids

b. Alkalis

c. Water

- d. Salt solutions
- 2. What is the main purpose of acid-base titration?
 - a. To test if reactants react
 - b. To calculate the concentration of unknown analyte
 - c. To calculate the concentration of known analyte
 - d. To test quality of reactants
- Electrolytes when dissolved in water dissociate into their constituent ions. The degree of dissociation of an electrolyte increases with
 - a. Increasing concentration of the electrolyte
 - b. Decreasing concentration of the electrolyte
 - c. Decreasing temperature
 - d. Presence of a substance yielding a common ion
- 4. Which will not affect the degree of ionization
 - a. Temperature

b. Concentration

c. Type of solvent

- d. Current
- 5. Which of the following is equal to the pKa of a weak acid?
 - a. Its relative molecular mass
 - b. The pKb of its conjugate base
 - c. The pH of a solution containing equal amounts of the acid and its conjugate base
 - d. The equilibrium concentration of its conjugate base
- 6. Which of the following relationship is true in water at 25°C?
 - a. $[H^+]=[H_2O]$

b. [OH-]=[H₂O]

c. K_w> 10-14

- d. [H+]=[OH-]
- 7. A solution of HCl with a concentration of 4×104 molL-1 has a pH of
 - a. 2.67

b. 3.21

c. 3.40

- d. 4.31
- 8. A buffer solution comprises which of the following?
 - a. A weak acid in solution
- b. A strong acid in solution
- c. A weak base in solution
- d. A weak acid and its conjugate base in solution

9.	The pH for the solution of salt hydrolysta. $pH = \frac{1}{2} (pK_w - pK_b - logC)$	is of NH4Cl is given by
	a. $pH = \frac{1}{2} (pK_w - pK_b - logC)$	b. $pH = \frac{1}{2} (pK_w + pK_b + logC)$
	a. $pH = \frac{1}{2} (pK_w - pK_b - logC)$ c. $pH = \frac{1}{2} (pK_a + pK_w - pK_b)$	d. None of the above
10.	The solubility product expression for Sn(OH) ₂ is	
	a. [Sn ²⁺][OH-]	b. [Sn ²⁺] ² [OH-]
	c. [Sn ²⁺][OH·] ²	d. [Sn ²⁺][2OH ⁻] ²
11.	The surface tension of a liquid vanishes roughly above the critical temperature (fill in the blank)	
	a. 4°C	b. 5°C
	c. 6°C	d. 7°C
12.	η and ϕ are the viscocity and fluidity of a liquid respectively then	
	a. $\eta = 1/\phi$	b. $\eta = 1/\phi^2$ d. $\eta = 1/2\phi$
	$\eta = \phi^2$	d. $\eta = 1/2\phi$
13.	A crystal having unit cell dimensions $a \ne b \ne c$, $\alpha = \beta = \gamma = 90^{\circ}$ is	
	a. cubic	b. tetragonal
	c. orthorhombic	d. hexagonal
14.	The total number of space groups in a cr	rystal is
	a. 7	b. 14
	c. 32	d. 230
15.	Relationship between orientational order of solids, liquids and liquid crystals is	
	a. solid > liquid > liquid crystal	b. solid > liquid crystal > liquid
	c. liquid > liquid crystal > solid	d. solid < liquid crystal < liquid
16.	The Boyle's law states that	
	a. the volume of a gas is inversely proportional to the pressure of a gas at a constant	
	b. The volume of a gas is directly proportional to the temperature at constant	
	pressure	ortional to the temperature at constant
	c. None of the above	
	d. Both are correct	
17.	According to kinetic theory of gases, the energy per mole of a gases is equal to	
	a. RT	b. 1.5 RT
	c. 0.5 RT	d. Cannot defined
18.	Kinetic energy of a gad depend upon its	
	a. Molecular mass	b. Atomic mass
	c. Equivalent Mass	d. None of the above
19.	Which of the following statement is true regarding gases?	
	a. gases are highly incompressible	b. gases exert equal pressure on each
		and every direction
	c. its volume and shape is fixed	d. gases have the highest density among
		the 3 States of matter

- 20. For an ideal gas, the value of compressibility factor, Z is equal to
 - a. 0

b. 1

c. 2

d. None of the above

Descriptive

Time: 2 hrs. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

- 1. a. Calculate the temperature at which the root mean square velocity, the average velocity and the most probable velocity of oxygen gas all are equal to 1500 m/s.
 - **b.** What is heat of vaporisation? How is it related to Trouton's rule? Boiling point of a liquid is 76°C. Estimate its heat of vaporisation assuming it obeys Trouton's rule.
 - c. Discuss in detail the phenomenon of hydrolysis of salts. Illustrate your answer taking examples of the salt of a weak acid and strong base.
- 2. a. Describe 'Hole' theory with respect to liquid viscosity. What do you understand by Reynolds number?
 - b. What is the molar solubility, s, of Ba₃(PO₄)₂ in terms of Ksp. Write two difference between solubility product and ionic product. Explain two uses of buffer in analytical chemistry.
- 3. **a.** State the principle of equipartition energy. 3+4+3 =10
 - **b.** How a gas can be liquefied. Explain. What is critical temperature and critical pressure of a gas?
 - c. Write the virial equation of state of a real gas. Why real gases show deviations from ideal behaviour.
- 4. **a.** starting from the basic postulates of the kinetic theory of gases, derive the kinetic gas equation. 4+1+5 =10
 - b. Using the kinetic gas equation, derive Avogadro's Law.

3+3+4

=10

4

2+2+2

=6

- c. 50ml of a solution of CH₃COOH (0.1 M) is being titrated against standard (0.125 M) solution of NaOH. Calculate pH values of the titration solution of 30, 40, 50 ml of NaOH solution.
- 5. a. What do you meant by acid-base indicators? How to select an indicator for an acid-base titration? Write four limitations of indicators. Explain the action of Phenolphthalein.
 - **b.** Explain graphically how the adsorption varies with pressure at a constant temperature.
- 6. a. Explain why a solution of a weak acid and its salt behaves as buffer. Explain the term of buffer range. Calculate pH before and after the addition of 0.01 mole of NaOH to 1 liter of a buffer solution of 0.1 M CH₃COOH and 0.1 M CH₃COONa. (pKa=1.75×10⁻⁵).
 - **b.** The surface tension of water is 72.8 dynes cm⁻¹. Calculate the energy required to disperse one spherical drop of radius 3.0 mm into spherical drops of radius 3.0 X 10⁻³ mm.
- 7. **a.** Derive Bragg's equation for X-ray diffraction. KNO₃ crystalizes in orthoronmic form with unit cell dimensions a = 542 pm, b= 917 pm and c = 645 pm. Calculate the angle of diffraction from (111) plane by a X-ray of wave length 154.1 pm.
 - **b.** Differentiate between vacancy and intertitial defects. Differentiate between Frenkel and Schottky defects.
 - c. What is director of a liquid crystal. How Nematic liquid crystal differ from Smectic liquid crystal.
- 8. a. Define the terms solubility and solubility product of a substance.

 Explain giving at least four examples of the use of the concept of solubility product in qualitative analysis.
 - b. The solubility product of CaF₂ is 3.45×10⁻¹¹. If 2.0 ml of 0.10 M solution of NaF is added to 128 ml of 2×10⁻⁵ M solution of Ca(NO₃)₂, will CaF₂ precipitate?

2

3