2024/05

SET

B.Sc. CHEMISTRY SECOND SEMESTER INORGANIC CHEMISTRY-II BSC – 201 [REPEAT] [USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Full Marks: 70

Objective

Marks: 20

Time: 30 min.

 $1 \times 20 = 20$

Choose the correct answer from the following:

- Boric acid is a
 Weak monobasic acid
 Weak dibasic acid
 Weak dibasic acid
 Which are of the following is an example of orthologies
- Which one of the following is an example of orthoborite

 a. Mg₃(BO₃)₂
 b. CaSn(BO₃)₂
 c. HBO₃
 d. All of the above

 Which of the following boron nitride resemble with graphite
- Which of the following boron nitride resemble with graphite
 a. Cubic-BN
 b. Hexagonal-BN
 c. Both (a) and (b)
 d. None of the above
- 4. The monomer unit present in Borane is

 a. BO₃.
 b. BO₂²d. B₂O₃

 5. The ratio of Si to O in pyrosilicate is

 a. 2:4
 b. 1:4
 c. 2:7
 d. 1:5
- 6. The hybridization of XeF_2 molecule is a. sp^3d b. dsp^2 c. sp^3 d. sp^2
- 7. The geometry and shape of XeO₃ molecule respectively
 Tetrahedral geometry and pyramidal Pyramidal geometry and
 - a. shape
 c. Both Tetrahedral

 The formula of noble gas species which is isostructural with BrOx is
- 8. The formula of noble gas species which is isostructural with BrO₃ is
 a. XeOF₄
 b. XeF₂
 c. XeO₃
 d. None of the above
- 9. The oxidation state of Oxygen in O₂PtF₆ is

 a. 0

 b. +1/2

 c. -1/2

 d. +1

10.	XeF ₆ on reaction with CsF produce a. [XeF ₅][CsF ₂] c. [XeF ₄][CsF ₃]		Cs[XeF ₇] No Reaction	
11.	Relative strengths of strong acids is determined. Water		Sodium hydroxide	
	c. anhydrous acetic acid		None of the above	
12.	Basicity of an acid is defined as The number of hydrogen atoms		The number of H+ furnished by a	
	a. furnished by a molecule.	b.	molecule.	
	c. The number of OH· furnished by a molecule.	d.	None of the above	
13.	According to Lewis Concept, a base is a substance that can			
	a. Donate an electron pair.		Accept single electron	
	c. Accept electron pair	d.	None of the above	
14.	Hard acids prefer to bind			
	a. Hard bases	b.	Soft bases	
	c. Strong bases	d.	None of the above	
15.	HCl is			
	a. Stronger than HClO ₄	b.	Weaker than HClO ₄	
	c. Of the same strength as HClO ₄		None of the above	
16.	KMnO ₄ solution is			
	a. Primary standard solution	b.	Secondary standard solution	
	c. Tertiary standard solution		None of the above	
17.	H ₂ S is			
	a. Oxidizing agent	b.	Reducing agent	
	c. Both a and b		None of the above	
18	Volumetric analysis is		chemical analysis.	
	a. Quantitative		Qualitative	
	c. Both a and b		None of the above	
10	Standard electrode potential is used to			
17.	a. Calculate cell potential	h	Predict possible reaction	
	c. Both a and b		None of the above	
20.	If the standard reduction potential values of	X	and Y is 3.04 V and 1.24 V	
	respectively, then a. X will reduce Y	h	Y will reduce X	

d. Both b and c

c. X will oxidise Y

$\Big(\ \underline{Descriptive} \ \Big)$

Time: 2 hrs. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

1.	a.	write down one preparation and property of (NPCl ₂) ₃ . Write down the possible interhalogen compounds of AX ₃ .	
	b.	Explain the hybridization of XeF ₂ using Valence Bond Theory.	2
	c.	Making use of Pearson's Rule, how can you predict relative strengths of compounds and complexes?	2
	d.	What do you mean by oxidizing agent and reducing agent? Give examples.	3
2.	a.	Discuss the preparation method of nitric acid.	2+3+2+3 = 10
	b.	Draw the structure and bonding of phosphorous pentaoxide.	= 10
	c.	"Electron deficient hydride behaves as a Lewis acid"- Justify the statement.	
	d.	Justify that solubility of borax is temperature dependent.	
3.	a.	Write the preparation of XeF ₆ molecule.	3+2+5 =10
	b.	Discuss the shape of XeF ₄ molecule.	=10
	c.	Explain the chemical properties of XeF ₄ molecule.	
4.	a.	How degree of acidity determined is based on strengths of Y-H bond?	3+3+4 =10
	b.	What is a levelling solvent? How are the strengths of strong acids differentiated by levelling solvents?	
	c.	How Arland, Chatt and Davis categorized metal ions and ligands in to two classes?	
5.	a.	What are Soft acids and soft bases? Explain with suitable examples.	4+4+2 =10
	b.	Illustrate Pearson's Simple Rule of Thumb with suitable examples.	

- c. What is the role of indicator in case of volumetric analysis? Give one example.
- a. Identify the class of following carboranes and find their total number of electron pair: (i) C2B3H7 and (ii) C2B4H6

4+1+2+3 =10

- b. Find out the oxidation state of "Hyponitrous acid"
- c. Draw the structure of peroxoacids of sulphur.
- d. Show oxidation and reduction process in the following reaction. Also show which one is acting as reducing agent and which one acting as oxidizing agent. $2FeCl_3 + H_2 = 2FeCl_2 + 2HCl$
- 7. a. What are the chemical properties of XeF2 molecule?

5+3+2

=10

- b. Write the preparation of XeF4 molecule.
- c. What are the standard conditions to measure standard electrode potential? And this is measured with respect to which electrode?
- a. Explain what is redox reaction with suitable example? Define 6+4=10 standard electrode potential? What is electrochemical series and which couple has the highest positive value?

b. What are the criteria for a primary standard solution? What are the different types of titrations involved in volumetric analysis?