B.Sc. CHEMISTRY INORGANIC CHEMISTRY IV SIXTH SEMESTER BSC - 601 [SPECIAL REPEAT]

[USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Time: 30 min.

Objective

Marks: 20

Choose the correct answer from the following:

1X20 = 20

Full Marks: 70

2024/07

SET

- 1. Homogeneous hydrogenation of alkene with Wilkinson catalyst take place in -
 - a. 10 Atmospheric Pressure & 25 ° C
 c. 1 Atmospheric Pressure & 25 ° F
- b. 1 Atmospheric Pressure & 25 ° C d. 1 Atmospheric Pressure & 25K
- 2. In the Hydroformylation of alkene, what reaction gives linear aldehyde?
 - a. Markovnikov

b. Anti-Markovnikov

- c. Fridel-Craft reaction
- d. Wilkinson Catalysis
- 3. The Water Gas shift reaction $CO_{(g)} + H_2O_{(1)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$ is
 - a. Exothermic

- b. Endothermic
- c. Exothermic- entropy driven
- d. Endothermic-entropy driven.
- 4. In which complex there is only O-bond between the ligand and metal atom?
 - a. W(CH₃)₆

b. (η5- C5H5)2Fe

c. K[Pt(C₂H₄)Cl₃]

- d. CH₃Mn(CO)₅
- 5. Choose the Catalyst for preparation of Isotactic Polypropylene
 - a. Wilkinson Catalysts
- b. Wacker Catalysts
- c. Ziegler-Natta catalysts
- d. Lithium Alkyls

- 6. Zeise' salt is
 - a Potassium-platinum chloride
- b. Potassium trichloro (ethylene palatinate)
 - hydrate
- c Potassium ethylene trichloride
- d. None of the above.
- 7. The ions are precipitated when the
 - a. Ionic concentration equals the solubility product.
 - b. Ionic concentration is greater than solubility product.
 - c. Ionic concentration is smaller than solubility product
 - d. None of the above
- 8. Interfering acid radicals interfere with systematic analysis
 - a. After group V

b. After group II

c. After group III A

- d. None of the above
- 9. Terminally bonded CO group absorbs at
 - a 2050 -1900 cm-1

b. 1800-1700 cm-1

c 1900-1800 cm-1

d. None of the above

 10. CO group in a metal carbonyl cation absorbs at a. A lower frequency as compared to a neutral metal carbonyl b. A higher frequency as compared to a neutral metal carbonyl c. The same frequency as neutral metal carbonyl d. None of the above. 		
11. Fe (CO) ₅ exhibits a. Trigonal bipyramidal geometry c. Square planar geometry	b. Square pyramidal geometry d. None of the above.	
 12. Fe₂(CO)₉ is prepared by a. Thermal decomposition of Fe (CO)₅ c. Reductive carbonylation Fe (CO)₅ 	b. Photolysis of Fe (CO) ₅ d. None of the above	
The dimeric cyclopentadienyl rhodium h Tetrahedral geometry Trigonal bypyramidal geometry	has a b. Square planar geometry d. None of the above.	
14. Borate is removed by evaporation witha. Conc HClc. NaCl	b. NaOH d. None of the above.	
15. For a week electrolyte the degree of dissoa. Square root of dilutionc. The amount of solvent	b. The concentration d. None of the above.	
16. The oxidation state of Pt in [PtCl ₂ (NO ₂)(N a. +4 c. +3		
17. Which of the following is correct statementa. No chemical changec. Both complexes should be in same spin		
18. Which of the following are good bridging a. Br-c. SO ₄ ² -	ligand b. NCS- d. All of the above	
19. Which of the following is the conditions oa. Both complexes should not be inertc. The electron to be transferred shouldnot present in t_{2g} set of orbitals	f outer sphere mechanism b. Both complexes should be in same spin d. None of the above	
20. The condition for inner sphere mechanism a. One complex must be labile	b. Two metal atoms forming a bridged complex	
c. In this reaction bonds are broken and made	d. All of the above	

Descriptive

Time: 2 hrs. 30 min. Marks: 50

[Answer question no.1 & any four (4) from the rest]

1.	a. What is Zeise's salt? How is it prepared? Give its structure.	4+3+3
	 b.Write the synthesis of the following i. cis & trans [Pt(C₂H₄)(NH₃)Cl₂] ii. cis & trans [Pt(NH₃)₂Cl₂] 	=10
	c. Explain the bonding in Al ₂ (CH ₃) ₆ .	
2.	Explain the i. Mechanism of Wilkinson's hydrogenation of alkene. ii. Wacker catalysis for synthesis of aldehyde.	5+5=10
3.	Explain the bonding and structure of i. (LiCH ₃) ₄ ii. K[Pt(C ₂ H ₄)Cl ₃]	5+5=10
4.	a. What is synergetic effect? Explain in terms of bonding in transition metal carbonyls.	5+5=10
	b. How is IR data able to explain the extent of back bonding in metal carbonyls?	
5.	a. What is solubility product? How is it related to precipitation of a compound?	5+5=10
	b. What is an interfering acid radical? How is phosphate removed in systematic group analysis?	
6.	a. Draw the structure of Ni (CO) ₄ . How is the structure justified by Raman Spectral studies?	3+2=5
	b. Explain the principle behind the precipitation of Group I cations.	

7. a. Explain the two theories of trans effect.

5+5=10

b.Explain the mechanism of nuleophilic substitution reaction in square planar complexes.

8. Discuss the mechanism of two electron transfer reactions.

5+5=10

4