M.Sc. PHYSICS THIRD SEMESTER ELECTRONICS & COMMUNICATION ENGINEERING MPH-304 B

Duration: 3 Hrs.

Marks: 70

PART: A (OBJECTIVE) = 20 PART: B (DESCRIPTIVE) = 50

[PART-B : Descriptive]

Duration: 2 Hrs. 40 Mins.

Marks: 50

[Answer question no. One (1) & any four (4) from the rest]

- 1. Find transmission line equations for voltage and current. (5+3+2=10)

 Define characteristic impedance; find the mathematical expression for it.

 Write the conditions for lossless and distortionless transmission line.
- Define unbounded and bounded media of propagation. Write different types (5+5=10) of transmission line with diagram.
 An open wire transmission line has

 $R=84\Omega/km$, $G=10^{-6}$ mhd km. L=0.0 1H/km, C=0.06 µF/km and $f=10^{3}$ Hz Find the characteristic impedance, propagation constant and velocity of propagation.

3. Find the greatest number of half waves of electric intensity with which it may be possible to propagate a signal of 10~GHz in a waveguide whose wall separation is 0.05m. Calculate the guide wavelength for this mode of propagation.

(6+4=10)

Obtain the following expression for parallel planes:

$$\frac{1}{\lambda_0^2} = \frac{1}{\lambda_c^2} + \frac{1}{\lambda_g^2}$$

- **4.** Define waveguide. Discuss TE wave propagation in parallel plane waveguide. (6+4=10) Find the expression for cut off frequency of parallel plane waveguide for TE mode.
- **5.** What do you mean by modulation? Define various types of modulation. (2+3+5=10) Explain mathematical analysis of AM process showing modulated carrier waves.
- Explain transistor detection of AM signals.
 Discuss various techniques used in digital modulation process.

E. E. 10)

(5+5=10)

- 7. Write short notes on: (any two) iii) PSK
 - i) PWM ii) ASK
- Show that total power in AM wave is 8.

(4+6=10)

(5+5=10)

$$P_T = P_C \left(1 + \frac{m^2}{2} \right)$$

A 10 MHz sinusoidal carrier wave of amplitude 10 mV is modulated by a 5kHz sinusoidal audio signal wave of amplitude 6mV. Find the frequency components of the resulted wave and their amplitudes.

M.Sc. PHYSICS THIRD SEMESTER **ELECTRONICS & COMMUNICATION ENGINEERING** MPH-304 B

[PART-A : Objective]

Choose the correct answer from the following:

1×20=20

1. The characteristic impedance Z_0 of transmission line is

a.
$$\sqrt{\frac{R+j\omega L}{G+j\omega C}}$$
 b. $\sqrt{\frac{G+j\omega C}{R+j\omega L}}$

b.
$$\sqrt{\frac{G+j\omega C}{R+j\omega L}}$$

c.
$$\sqrt{\frac{G - j\omega C}{R + j\omega L}}$$
 d. $\sqrt{\frac{G - \omega C}{R + \omega L}}$

d.
$$\sqrt{\frac{G - \omega C}{R + \omega L}}$$

2. For lossless transmission line, which statement is correct?

a.
$$R = 0, G = 0$$

b.
$$R \neq 0, G = 0$$

c.
$$R = 0, G \neq 0$$

d.
$$R \neq 0, G \neq 0$$

3. For TE wave:

a.
$$E_z = 0$$

b.
$$E_z \neq 0$$

c.
$$H_z = 0$$

d.
$$H_z \neq 0$$

4. Velocity of wave in free space is:

a.
$$\frac{1}{\sqrt{\mu\varepsilon}}$$

$$\sqrt{\mu} \varepsilon$$

$$\mathbf{c.} \quad \frac{1}{\sqrt{\mu_0 \, \varepsilon_0}}$$

d.
$$\sqrt{\mu_0 \varepsilon}$$

Critical frequency for parallel plane is:

a.
$$f_C = \frac{m}{2a\sqrt{\mu\varepsilon}}$$

a.
$$f_C = \frac{m}{2a\sqrt{\mu\varepsilon}}$$
 b. $f_C = \frac{m}{a\sqrt{\mu\varepsilon}}$

$$f_c = \frac{1}{2a\sqrt{\mu\varepsilon}}$$

c.
$$f_c = \frac{1}{2a\sqrt{\mu\varepsilon}}$$
 d. $f_c = \frac{a}{2m\sqrt{\mu\varepsilon}}$

- Which of the following statements are true for a transmission line parameters R, L, G and
 - R and L are series elements.
 - G and C are shunt elements. b.
 - Both R and G depend on conductivity of the conductors forming the line.
 - Only R depends explicitly on frequency.

- Process of recovering AF signal from the modulated carrier wave is known as:
 - demodulation
 - modulation
 - rectification
 - amplification
- The main purpose of modulation is to:
 - combine two waves of different frequencies.
 - achieve wave shaping of the carrier.
 - transmit low frequency information over distances efficiently.
 - produce sidebands.
- 100% modulation is produced in AM when carrier:
 - frequency equals signal frequency.
 - frequency exceeds signal frequency.
 - amplitude equals signal frequency.
 - amplitude exceeds signal frequency.
- In an AM wave with 100% modulation, each sideband carries......of the total transmitted 10. power.
 - one-half
- b. one-sixth
- one-third
- d. two-third
- 11. VSWR stands for:
 - ratio of voltage wave.
 - ratio of current wave.
 - ratio of amplitude wave.
 - ratio of frequency wave.
- **12.** In PAM process:
 - width of the pulse is varied.
 - frequency of the pulse is varied.
 - amplitude of the pulse is varied.
 - none of the above.
- 13. Modulation may be defined as:
 - a. $m = \frac{E_c(\text{max .}) E_c(\text{min .})}{E_c(\text{max .}) + E_c(\text{min .})} \times 100$
 - **b.** $m = \frac{E_c(\text{max .}) + E_c(\text{min .})}{E_c(\text{max .}) E_c(\text{min .})} \times 100$
 - c. $m = \frac{E_c(\text{max .}) + E_c(\text{min .})}{E_c(\text{max .}) + E_c(\text{min .})} \times 100$
 - **d.** $m = \frac{E_c(\text{max .}) E_c(\text{min .})}{E_c(\text{max .}) E_c(\text{min .})} \times 100$

$$\frac{mA}{2}\cos 2\pi (f_c + f_m)$$

In AM.

- lower side frequency a.
- upper side frequency
- carrier frequency
- modulated frequency

15. In ASK or PSK detector consists of:

- multiplier, integrator, decision device.
- multiplier, integrator.
- integrator, decision device.
- none of the above. d.

Wave guiding systems can be dived as:

- transmission line
- b. wave guides

both a) and b)

d. none of the above

17. Wave propagation is divided into:

- unbounded media propagation.
- bounded media or guided wave propagation. b.
- both a) and b).
- nine of the above.

Relation between $\,^{\lambda_0}$, $^{\lambda_g}$ and $^{\lambda_c}$ is:

$$\mathbf{a.} \qquad \frac{1}{\lambda_0^2} = \frac{1}{\lambda_c^2} - \frac{1}{\lambda_g^2}$$

$$\frac{1}{\lambda_0^2} = \frac{1}{\lambda_c^2} - \frac{1}{\lambda_g^2}$$
 b.
$$\frac{1}{\lambda_0^2} = \frac{1}{\lambda_c^2} + \frac{1}{\lambda_g^2}$$

$$\mathbf{c.} \qquad \frac{1}{\lambda_c^2} = \frac{1}{\lambda_0^2} + \frac{1}{\lambda_g^2}$$

$$\frac{1}{\lambda_c^2} = \frac{1}{\lambda_0^2} + \frac{1}{\lambda_g^2}$$
 d. $\frac{1}{\lambda_g^2} = \frac{1}{\lambda_c^2} + \frac{1}{\lambda_0^2}$

19. Total power in AM wave is:

a.
$$P_T = P_C \left(1 - \frac{m^2}{2} \right)$$
 b. $P_T = P_C \left(1 + \frac{m^2}{2} \right)$

b.
$$P_T = P_C \left(1 + \frac{m^2}{2} \right)$$

c.
$$P_T = P_C \left(1 + \frac{m^2}{4} \right)$$
 d. $P_T = P_C \left(1 - \frac{m^2}{4} \right)$

$$P_T = P_C \left(1 - \frac{m^2}{4} \right)$$

DSB-SC stands for:

- double sideband superposed carrier.
- double sideband single carrier.
- dual sideband suppressed carrier.
- double sideband suppressed carrier.

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

Scrutinizer's Signature

[PART (A) : OBJECTIVE]

Duration: 20 Minutes

Ser	ial	no.	of	the
main	A	nsw	er	sheet

Invigilator's Signature

Course:					
Semester:	Roll No :				
Enrollment No:	Course code :				
Course Title :					
	'-18 Date :				
	¥1				
***********	***************************************	**********			
Instructions / Guidelines					
The paper contains twenty (20) / ten (10) questions.					
➤ Students shall tick (✓) the correct answer.					
➤ No marks shall be g	➤ No marks shall be given for overwrite / erasing.				
> Students have to submit the Objective Part (Part-A) to the invigilator just after					
completion of the al	completion of the allotted time from the starting of examination.				
	Full Marks Marks Obtained				
	20				

Examiner's Signature