REV-00 MPH/45/50 2017/12

M.Sc. PHYSICS THIRD SEMESTER CONDENSED MATTER PHYSICS MPH-304 A

Duration: 3 Hrs.

Marks: 70

Marks: 50

PART : A (OBJECTIVE) = 20 PART : B (DESCRIPTIVE) = 50

[PART-B : Descriptive]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) & any four (4) from the rest]

1.	(a) Deduce the relation between specific heat Cv and thermal conductivity by following free electron gas theory.(b) What is Wiedmann Franz Law? Deduce the expression for Wiedmann Franz Law.	(5+5=10)
2.	What is density of states? From band theory of electronic states show that the Fermi energy can be given as: $E_F = \frac{\hbar^2}{2m} (\frac{3N}{8\pi})^{2/2}$	(2+8=10)
3.	What is Hall-effect? Explain with figure with proper direction of axes. From Lorentz force deduce the expression for hall coefficient. In the field of semiconductor industry how hall effect can be a useful physical phenomena?	(2+2+4+2=10)
4.	 (a) From bloch theorem show that number of possible wave function for an electron per band is <i>na=L</i>; where L is linear crystal length, <i>a</i> is lattice constant, and <i>n</i> is quantization. (b) Why effective mass of an electron in a crystal is variable and not constant? Explain with mathematical deduction. 	(5+5=10)
5.	 (a) What is dispersion of light? From Maxwell equations deduce the dispersion relation between k and ω. Where k is wave vector and ω is angular frequency. (b) What are measurable optical constants, give two examples? Express the dielectric constant ε of a material in terms of measureable optical constant. 	(1+4+1+4=10)
6.	What are first and second order phase transitions briefly describe with examples? What is critical point of a phase transition? From real gas equation deduce the expressions for temperature pressure and volume at critical point.	(4+1+5=10)

7.	(a) Discuss briefly the important features of BCS theory. Explain how	(3+7=10)
	critical magnetic field varies with temperature in superconductors.	
	(b) Critical temperature of a sample with isotopic mass of 204.87 is 19.2 k.	
	Find T_c when isotopic mass changes to 218.87.	
2	(a) Prove that zero electrical resistivity and perfect diamagnetism are the	(5+3+2=10)

(b) Describe the Joshephson effect underlying a SQUID. Discuss applications of SQUID.

two mutually consistent properties of a superconductor.

= = * * = =

REV-00 MPH/45/50 A

1)

M.Sc. PHYSICS **THIRD SEMESTER CONDENSED MATTER PHYSICS MPH-304** A

[PART-A : Objective]

Choose the correct answer from the following:

- 1. According to drude model, in a metal:
 - a. Electrons are intact and ions are free to move in the block.
 - Electrons are free to move and ions are intact in the block. b.
 - Both electrons and ions are intact in the block. c.
 - Both electrons and ions are free in the block. d.
- 2. In drude model thermal conductivity is:
 - Directly proportional to mean free path. a.
 - b. Inversely proportional to mean free path.
 - Independent of mean free path. c.
 - d. Proportional to inverse square root of mean free path.
- 3. With increase in temperature the electrical conductivity of intrinsic semi-conductor:
 - Decreases. a.
 - b. Increases.
 - Remain same. C.
 - First increase and then decreases d.
- in the energy band In an extrinsic n-type semiconductor the fermi level_____ 4. diagram.
 - a. Remain in the same position.
 - b. Moves downwards.
 - Moves upwards. c.
 - d. Moves left.
- 5. A typical conductor usually have _____ visible optical behavior due to _____ band gap.
 - a. Good, Small b. Bad, Small
 - d. Bad, Large c. Good, Large
- 6. A typical insulator usually have _____ visible optical behavior due to _____ band gap.
 - a. Good, Small b. Bad, Small
 - d. Bad, Large c. Good, Large

- 7. Frank Condon principle is related to:
 - a. Lattice vibrational states.
 - Phonon vibrational states. b.
 - Sound vibrational states. C.
 - d. Molecular vibrational states.
- The Bloch theorem provides the notion of: 8.
 - a. The periodic motion of the electrons in a crystal.
 - b. The periodic motion of a soliton in a crystal.
 - The free random motion of an electron in a crystal. c.
 - d. The free random motion of a soliton in a crystal.
- Curie temperature is the temperature above which: 9.
 - a. A liquid become gas.
 - b. A paramagnet becomes diamagnet.
 - c. A ferromagnet becomes paramagnet.
 - d. A gas becomes liquid.
- 10. A brillouin zone in a solid state material is:
 - a. Allowed electronic energy band in k-space.
 - **b.** Forbidden electronic energy band in k-space.
 - Allowed electronic energy band in real-space. c.
 - d. Forbidden electronic energy band in real-space.
- 11. Can an electron have negative mass inside a solid?
 - a. No b. Yes
 - c. Never d. Always
- 12. If electric field applied along X-axis and magnetic field is applied along Y-axis, then the Hall Voltage will be generated in:
 - a. X-direction.
 - b. Y-direction.
 - c. Z-direct.
 - **d.** At an angle Θ <90° between X and Y.
- 13. An exciton is:
 - a. A strongly bound electron and ion pair.
 - b. A weakly bound electron ion pair.
 - c. A strongly bound electron hole pair.
 - d. A weakly bound electron hole pair.
- 14. Conversion of boiling water at 1 atmospheric pressure and 100°c in vapour is:
 - Zeroth order phase transition. a.
 - b. First order phase transition.
 - Second order phase transition. c.
 - d. Third order phase transition.

1×20=20

2017/12

- 15. The triple point of a substance:
 - a. Multiple.
 - b. Depends on Temperature, pressure, and volume.
 - c. Have two values.
 - d. Has one value.

16. Cooper pairs behaves as:

- a. Fermions
- b. Bosons
- с. п-mesons
- d. None of these
- 17. Energy gap of gallium in semiconducting state is:
 - **a.** ~1.1 eV
 - **b.** ~0.72 eV
 - **c.** ∼10⁻⁴ eV
 - **d.** $\sim 10^4 \text{ eV}$
- **18.** Below the critical temperature, the entropy of superconductors ______ compared to normal conductor.
 - a. Increases.
 - b. Decreases.
 - **c.** Remain same.
 - d. Depends on the material.
- **19.** The quantum of flux through the non-supper conducting region of a superconducting ring is equal to

= = * * = =

- a. h
- **b.** h/e
- c. he
- **d.** h/2e
- 20 Penitration depth and super electron density are related as:
 - a. $\lambda = n_s$
 - b. $\lambda \alpha(n_s)^{1/2}$
 - c. $\lambda \alpha(n_s)^{-1}$
 - **d.** $\lambda \alpha(n_s)^{-1/2}$

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

Uncerting Excelent	a de la companya de la company	[PART (A) : OB Duration : 20	JECTIVE Minutes	Serial no. of the main Answer sheet
Course :				
Semeste	er :		Roll No :	~
Enrollm	ent No :	· .	Course code :	
Course	Title :			
Session	: 2017-	18	Date :	
**********		Instructions / C	Guidelines	
> The paper contains twenty (20) / ten (10) questions.				
>				
8	No marks shall be gi	ven for overwrite / e	rasing.	
	Students have to sub	mit the Objective Pa	rt (Part-A) to the invigil	ator just after

completion of the allotted time from the starting of examination.

Full Marks	Marks Obtained
20	

Scrutinizer's Signature