REV-01 MSP/13/18

M.Sc. PHYSICS FOURTH SEMESTER NONLINEAR & FIBER OPTICS-II MSP - 401C

USE OMR FOR OBJECTIVE PARTI

Duration: 3 hrs.

Objective)

Time: 30 min.

Full Marks: 70

Marks: 20 1*X2*0=20

2024/05

SET

Choose the correct answer from the following:

1. Which of the following are examples of elastic scattering?

a. Rayleigh, Raman

b. Mie, Compton

c. Rayleigh, Mie

- d. Raman, Compton
- 2. The frequencies for molecular vibration ranges
 - a. 10-10² Hz

b. 103-104 Hz

c. 104-1012 Hz

- d. 1014-1018 Hz
- 3. Which of the following cannot be conserved during Raman scattering?
 - a. Kinetic energy

b. Potential energy

c. Electric energy

- d. Total energy
- 4. Raman shift depends on
 - a. incident wavelength
 - c. resolving power

- b. incident intensity
- d. molecular energy
- 5. Tyndall effect appears due to which of the following properties of light?
 - a. reflection

b. refraction

c. polarization

- d. scattering
- 6. Which of the following effect is responsible for the blue sky?
 - a. Rayleigh scatteringc. Mie Scattering

- b. Raman Scatteringd. Compton Scattering
- 7. In Raman spectroscopy, the radiation lies in the
 - a. Microwave Region
- b. Visible Region

c. UV Region

- d. X-ray Region
- 8. Which of the following lines are most intense?
 - a. Stokes lines

b. Rayleigh-scattered lines

c. Anti-strokes lines

- d. All
- 9. Which among the following Maxwell's equations is correct for free space?
 - a. $\nabla \cdot E = \rho / \varepsilon_0$
- b.
- $\nabla B = 0$
- c. $\nabla \times E = \partial B / \partial t$
- d. $\nabla \times B = \mu_0 J + \mu_0 \varepsilon_0 \, \partial B / \partial t$
- 10. On doping germanium metal, with a little amount of indium, what does one get?
 - a. Intrinsic semiconductor
- b. Insulator
- c. n-type semiconductor
- d. p-type semiconductor

11.	In n-type semiconductors, which one a	are the majority charge carriers?
	a. Holes	b. Protons
	c. Neutrons	d. Electrons
12.	Which one of the following grap	hs represents the V-I characteristics for
	semiconductor diode?	no represente une vir characteristics for
	K	
	A B	C D
	a. A	b. B
	c. C	d. D
13.	What will happen when a p-n junction	
	a. No current flows	b. The depletion region will increase
	c. The depletion region will reduce	d. The height of the potential barrier will reduce
14.	What will be the resistance measured	by an ohmmeter, if a p-n diode is reverse
	biased? a. Zero	b. Low
	c. High	d. Infinite
15.	is used to detect the optical s	
	a. Photodiode c. PIN diode	b. Zener diode d. GUNN diode
16.	Identify the LED from the following sy	mbols
		14 61
		NI NI
	A B	C D
	a. A	b. B
	c. C	d. D
17.	An LED made of GaAsP obtains an en	ergy bandgap Eg = 1.90 eV. The wavelength of
	the emitted light is	ergy bandgap bg 1.50 cv. The wavelength of
	a. 240 nm	b. 350 nm
	e. 653 nm	d. 864 nm
18.	The loss in the fiber is counted the min	imum at wavelength
	a. $\lambda = 750 \text{ nm}$	b. λ = 860 nm
	e. $\lambda = 1300 \text{ nm}$	d. $\lambda = 1550 \text{ nm}$

19. Positive group velocity dispersion K">0 indicates

a. Normal dispersion

c. Zero dispersion

b. Anomalous dispersiond. Waveguide dispersion

20. $A(z,t)=Nsech(\tau)$ indicates a

a. Bright solition

c. Gray soliton

b. Dark soliton

d. None of these

Descriptive

Time: 2 hrs. 30 min. Marks: 50

[Answer question no.1 & any four (4) from the rest]

 Explain the theory of elastic and inelastic collisions in Raman scattering? 10

2. a. Using radiation of wavelength 4×10^3 Å, the first Stoke's line appears at a spacing 350 cm⁻¹ from the Rayleigh line. Calculate the frequency of the first anti-stokes's line.

5+5=10

- b. In a specified direction, the intensities of light scattered (Rayleigh) by a scattering substance from two beams are in a ratio of 256:81. Determine the ratio of the frequency of the first beam to that of the second beam.
- 3. Classify the low dimensional structures on the basis of confinement. Draw the density of electron states in those confined structures.

5+5=10

4. a. When a particle of mass 'm' is confined in a semiconductor with hollow rectangular space of width 'a', then deduce its energy states

5+5=10

b. A particle of mass $1.67 \times 10^{-27} kg$ is moving in a 1D potential well of width 10\AA . Find the lowest energy level of the particle.

5.	a. b.	Define intrinsic and extrinsic semiconductors with diagrams. Explain the basic principles of semiconductor diodes.	5+5=10
6.	a.	What you understand by PN junction diode and how does its characteristic curve illustrate different biasing?	5+5=10
	b.	If an LED glows with wavelength 5493 Å, what is the energy band gap of the semiconductor material, that the LED made of?	
7.	a. b. c.	Distinguish between step and gradded indexed fibers. Define V-parameter and relative-index difference. Define normal and anomalous dispersion in fibers	4+3+3 =10
8.		ttline the fabrication process of a silica-based optical fiber, chlighting key steps and techniques involved.	10