REV-00 MPH/55/60

M.Sc. PHYSICS THIRD SEMESTER QUANTUM MECHANICS-II MPH-302

Duration: 3 Hrs.

Marks: 70

PART : A (OBJECTIVE) = 20 PART : B (DESCRIPTIVE) = 50

[PART-B : Descriptive]

Du	ration: 2 Hrs. 40 Mins.	Marks: 50
	[Answer question no. One (1) & any four (4) from the rest]	
1.	What do you mean by perturbation theory? Obtain the expression of the first order perturbation energy correction for a non degenerate system.	(2+8=10)
2.	 a) The unperturbed wave function for the infinite square well is given by ψ_n⁰(x) = √(2/a) sin((nπx)/a). If the system is perturbed simply by raising the floor of the wall by a constant amount only halfway across the wall. Calculate the energy of the nth state correcting to the first order. b) For a perturbation H' = ax, (where a is a constant) is added to an infinite square well potential expressed as V(x) = 0 for 0 < x < π = ∞ otherwise, then find the first order correction to the ground state energy. 	(5+5=10)
3.	 a) Applying stationary degenerate perturbation theory show that there is no first order Stark effect for ground state of H-atom. b) On the basis of variation method, prove that ⟨E⟩ ≥ E₀, where E₀ is the lowest energy state. 	(5+5=10)
4.	 a) The first order probability in time dependent perturbation theory expressed as α_k⁽¹⁾(t) ² = 4 ⟨k H' m ² /ħ²ω_{km}² sin²(ω_{km}t). Discuss its physical significance. b) Derive the Fermi-Golden rule from transition probability per unit time. 	(5+5=10)
5.	Define 'laboratory' and 'centre of mass' systems. Establish the relation between the laboratory and centre of mass system of scattering angles.	(2+8=10)
6.	 a) State Born approximation for scattering theory. When does it applied? Write the validity condition of Born approximation. b) Apply the Born approximation method to calculate the scattering cross- section from a screened Coulomb field. 	(2+1+1+6=10)

7. Establish Dirac's relativistic equation for free particle. Using Pauli's spin matrices, find the Dirac's matrices for \vec{a} and β . Prove that $\alpha_x \alpha_y \alpha_z = \frac{1}{2} [\alpha_x \alpha_y \alpha_z \beta, \beta]$.

= = *** = =

8. Show that Dirac electron has a magnetic moment $\mu = \frac{e\hbar\vec{\sigma}}{2mc}$.

(10)

(6+2+2=10)

M.Sc. PHYSICS THIRD SEMESTER QUANTUM MECHANICS-II MPH-302

[<u>PART-A:Objective</u>]

Choose the correct answer from the following:

- 1. Stark effect occurs in presence of:
 - a. electric field
 - b. magnetic field
 - c. gravitational field
 - d. weak field
- 2. The behaviour of H-atom in first excited state (n = 2) is like a permanent dipole moment of magnitude. (for a_n being Bohr's radius)
 - a. 3ø
 - b. 3ea.
 - c. 3
 - d. 3a₀
- 3. The first order energy correction in time independent perturbation theory is:
- * a. $E_{k}^{(1)} = \langle k || H' || k \rangle$ b. $E_{k}^{(1)} = \frac{\langle k || H' || k \rangle}{E_{k}^{(2)}}$ c. $E_{k}^{(1)} = \frac{\langle k || H' || k \rangle}{E_{k}^{(2)} - E_{k}^{(2)}}$
- d. none of these
- 4. WKB approximation applies to any situations in which potential (as function of position) is:
 - a. constant
 - **b.** fast varying
 - c. slowly varying
 - d. none of these
- 5. A system is called degenerate system if a number of orthogonal Eigen function corresponds to ______ Eigen value. (Select the correct option)
 - a. same
 - b. different
 - c. zero
 - d. none of these

6. The transition probability per unit time in time dependent perturbation theory is:

a.
$$\omega = \frac{1}{t} \int |a_k^{(1)}(t)|^2 dE_k$$

b.
$$\omega = \int |a_k^{(1)}(t)|^2 \rho(k) dE_k$$

c.
$$\omega = \frac{1}{t} \int |a_k^{(1)}(t)|^2 \rho(k) dE_k$$

d. constant in time

- 7. The value of time dependent constants in perturbation theory is:
 - a. $a_k = i\hbar \sum a_n \langle k|H'|m \rangle e^{i\omega_{km}t}$ b. $a_k = (i\hbar)^{-1} \sum a_n \langle k|H'|m \rangle e^{i\omega_{km}t}$ c. $a_k = i\hbar^{-1} \sum a_n \langle k|H'|m \rangle e^{i\omega_{km}t}$ d. $a_k = i\hbar^{-2} \sum a_n \langle k|H'|m \rangle e^{i\omega_{km}t}$
- 8. In 'centre of mass' system, the reduced mass of two particles of masses m_1 and m_2 is:
 - a. $\mu = \frac{m_1 m_2}{m_1 + m_2}$ b. $\mu = \frac{m_1 - m_2}{m_1 m_2}$ c. $\mu = \frac{m_1 + m_2}{m_1 m_2}$ d. $\mu = \frac{m_1 m_2}{m_1 - m_2}$
- **9.** The interaction Hamiltonian for a charged particle in an electromagnetic field is given by:
 - a. $H_{int} = -\frac{s}{mc}A.p$
 - b. $H_{int} = \frac{e}{mc} A \cdot p$
 - c. $H_{int} = A.p$
 - d. $H_{int} = \frac{n}{2\pi} A.p$
- **10.** The scattering process, in which energy of the incident particle alters, is a/an ______ scattering process. (Select correct option)
 - a. elastic
 - b. inelastic
 - c. plastic
 - d. none of these
- 11. The scattering cross-section $(\sum \omega)$ of the incident particles (as presented by $n = \sum \omega J d\omega$) has the dimension of:
 - a. length
 - **b.** surface area
 - **c.** volume
 - d. no dimension
- 12. Condition for validity of classical theory of scattering is derived from:
 - a. Lagrange's equation
 - c. Heisenberg's uncertainty principle d. Compton scattering

b. Hamilton's principle

2017/12

1×20=20

13. The D'Alembertian operator is given by:

$$\begin{aligned} \mathbf{a.} \quad & \Box = \nabla - \frac{\partial}{\partial t} \\ \mathbf{b.} \quad & \Box^2 = \nabla^2 + \frac{2mE}{\hbar^2} \\ \mathbf{c.} \quad & \Box = \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \\ \mathbf{d}_r \quad & \Box^2 = \nabla^2 + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \end{aligned}$$

14. The differential scattering cross-section is given by:

a.
$$\frac{d\sigma}{d\Omega} = |f(\theta)|$$

b. $\frac{d\sigma}{d\Omega} = |f(\theta)|^2$
c. $\frac{d\sigma}{d\Omega} = \frac{|f(\theta)|}{r}$
d. $\frac{d\sigma}{d\Omega} = \frac{1}{|f(\theta)|}$

15. Hamiltonian for free particle is:

a.	$H = -\frac{\hbar^2}{2m}\nabla^2$	b. $H = -\frac{2m}{\hbar^2} \nabla^2$
c.	$H=\frac{2m}{\hbar^2}\frac{\partial}{\partial t}$	d. $H = \frac{\hbar^2}{2m} \frac{\partial}{\partial t}$

16. Klein-Gordon equation can describe particles of:

a.	integral spin	b. half integral spin
c.	zero spin	d. all of these

17. Dirac's matrices for $\vec{\alpha}$ and β are:

a.	commutative	b. associative
c.	anti-commute	d. none of these

18. For the Dirac electrons (at rest) the negative and the positive energy states are separated by a gap equal to:

= = *** = =

a. $\frac{1}{2}mv^2$ b. mc^2

c. $2mc^2$ **d.** ∞

- 19. In Feynman's path integral method the classical "action" is expressed as:
 - a. $S = H\{x(t)\}$ b. $S = L\{x(t)\}$
 - c. $S = \int_0^t L\{x(t)\} dt$
 - d. $S = \sum H\{x(t)\}$
- 20. The total wave function of all possible paths of a particle can be given by:

a. $\psi = N \sum_{all path} e^{iS[x(t)]/\hbar}$

- b. $\psi = -N \sum_{all path} e^{iE/\hbar}$ c. $\psi = N \sum_{all path} e^{i\hbar/5|x||}$ $\psi = N \sum_{all \, path} e^{i\hbar/S[x(t)]}$

d.
$$\psi = N \sum_{\alpha \parallel n \alpha t h} e^{-i\hbar/S[x(t)]}$$

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

Curceling Excellence	[PART (A) : OBJECTIVE] Duration : 20 Minutes	Serial no. of the main Answer sheet
Course :		
Semester :	Roll No :	
Enrollment No ·	Course code :	
	course course	
Course 1 itle :		
Session : 201	7-18 Date :	
••••••	Instructions / Guidelines	
The paper containStudents shall tick	s twenty (20) / ten (10) questions. (✓) the correct answer.	
No marks shall beStudents have to s	given for overwrite / erasing. ubmit the Objective Part (Part-A) to the inv	vigilator just after
completion of the	allotted time from the starting of examinati	ion.

Full Marks	Marks Obtained
20	