M.Sc. PHYSICS
 THIRD SEMESTER MATHEMATICAL PHYSICS-II MPH-301

Duration: 3 Hrs.
Marks: 70
PART: A (ObJECTIVE) $=20$
PART: B (DESCRIPTIVE) $=50$
[PART-B : Descriptive]
Duration: 2 Hrs. 40 Mins.
Marks: 50

[Answer question no. One (1) \& any four (4) from the rest]

1. Express the Bessel differential equation. Obtain the solution of Bessel's function. Draw the graphs of the two functions $J_{0}(x)$ and $J_{1}(x)$.
2. (a) Express the following function in Fourier- Legendre expansion.
$f(x)=\begin{array}{ll}0 & -1 \leq x \leq 0 \\ 1 & 0 \leq x \leq 1\end{array}$
(b) (i) Prove that:
$I / / 2(x)=\sqrt{\left(\frac{2}{\pi x}\right)} \sin x$
(ii) Prove that: $n P_{n}=(2 n-1) x P_{n-1}-(n-1) P_{n-2}$
3. Obtain the path integral equation for a free particle.
4. (a) State the Orthogonality Theorem and prove it for $d \neq d^{\prime}$.
(b) What is a unitary group? Show the Unitary representation of a group D_{3} and hence show the reducible representation of an equilateral triangle.
5. (a) Show that there is homomorphism between $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ generators. $(5+5=10)$
(b) Prove the orthogonality of Bessel function.
6. (a) Write a brief note on Homomorphism and Isomorphism of a group with suitable example.
(b) Show that a Group of non-zero complex numbers is a homomorphism.
7. (a) Prove that:
(i)
$\frac{d}{d x}\left[x^{n 2} J_{n}(x)\right]=x^{23} J_{n-1}(x)$
Or
(ii) Prove that
$\int_{-1}^{+1}\left[P_{n}(x)\right] d x=\frac{2}{2 n+1}$
(b) Obtain the integral form of Linear harmonic oscillator equation by transformation of its differential form into homogenous Fredholm Integral equation of second kind.
8. (a) If $u(x)=e^{-x^{2}}$ is a solution of the Volterra integral equation

$$
u(x)=1-\alpha \int_{0}^{x} t u(t) d t
$$

Find a ?
(b) Check if $x(x)=x+\varepsilon^{x}$ is a solution of the Fredholm integral equation

$$
u^{\prime \prime}(x)=e^{x}-\frac{4}{3} x+\int_{0}^{1} x t u(t) d t ; u(0)=1, u u^{\prime}(0)=2
$$

(c) Prove that $J_{n}(x)$ is a coefficient of z^{n} in the expansion of $e^{x / 2\left(z-\frac{3}{z}\right)}$.

$$
==* * *==
$$

M.Sc. PHYSICS
 THIRD SEMESTER
 MATHEMATICAL PHYSICS-II
 MPH-301

[PART-A: Objective]

Choose the correct answer from the following:

$1 \times 20=20$

1. The unitary matrix are precisely those matrices which preserve the Hermitian inner product:
a. $<v_{v} w>=\langle U w, v U\rangle$
b. $<v, w>=<U v, U w>$
c. $<v, w\rangle=\langle U u, w U\rangle$
d. $\langle v, w\rangle=\left\langle U w_{,} U w\right\rangle$
2. A function defined by $f(0)=f(2 \pi n)=1$, where $n=1,2, \ldots . n$, then the function is a:
a. Isomorphism
b. Endomorphism
c. Homomorphism
d. None of the above
3. If $a b=b a$ for all a, b of a group G, the multiplication is commutative, and the group is called:
a. Conjugate subgroup
b. An abstract group
c. Cyclic group
d. An abelian group
4. The orthogonality condition of Hermite polynomial for $(m \neq n)$ is given by:
a. $\int_{-=0}^{+\infty} H_{m_{n}}(x) H_{n}(x) e^{-x^{2}} d x=0$
b. $\int_{-\infty}^{+\infty} \varphi_{m}(x) \varphi_{n}(x) d x-0$
c. $\int_{-\infty}^{+\infty} \varphi_{m}(x) \varphi_{n}(x) e^{-x^{2}} d x=0$
d. $\int_{-\infty}^{+\infty} H_{m}(x) H_{n}(x) e^{x^{2}} d x-0$
5. Choose the incorrect option from the following:
a. A cyclic group is also abelian.
b. An abelian group is also cyclic.
c. If ' a ' group possesses an element a, a^{2}, a^{3}, \ldots, , then the group is cyclic.
d. All of the above.
6. The generating function of Laguerre polynomial L_{n} is:
a. $\sum_{n=0}^{\infty} \frac{L_{n}(x)}{n(n-1)!} t^{n}$
b. $\sum_{n=0}^{\infty} \frac{L_{n}(x)}{n(n+1)!} t^{n}$
c. $\quad \sum_{n=0}^{s e} \frac{L_{n}(x)}{n!} t^{n}$
d. $\sum_{n=0}^{\infty} \frac{i_{n}(x)}{(n-1)^{w}} t^{n}$
7. The recurrence formula for Bessel function of the form $\frac{d}{d x}\left(x^{n} J_{n}\right)$ is equal to:
a. $x^{n} J_{a}$
b. $x^{n} J_{n+1}$
c. $x^{n} J_{n+2}$
d. $x^{n} J_{n-1}$
8. The equation $g(x)=f(x)+\int_{a}^{a} d t \mathbb{K}(x, t) f(t)$ is a:
a. Volterra equation of first kind.
b. Volterra equation of second kind.
c. Fredholm equation of first kind.
d. Fredholm equation of second kind.
9. If the unknown appears only under the integral sign, we label it as:
a. Volterra equation of first kind.
b. Volterra equation of second kind.
c. Fredholm equation of first kind.
d. Fredholm equation of second kind.
10. $\hat{i} s=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
means
$S=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ is a Pauli matrix given by:
a. σ_{z}
b. ${ }^{\sigma} y$
c. $\quad \sigma_{\Xi}$
d. None of the above
11. The eight $\mathrm{SU}(3)$ generators can be represented in terms of zero-trace Hermitian matrices with
$S_{i}=\frac{1}{2} \lambda_{i}$
The λ_{1} are known as:
a. Diagonal matrices
b. Unitary matrices
c. Gell- Mann matrices
d. All of the above
12. If the Kernel $K^{\gamma}(x, t)=K(t, x)$, it is:
a. asymmetric
b. continuous
c. discontinuous
d. symmetric
13. The quantity

e is the:
a. Phase of the particle.
b. State of the object at time ' t '.
c. Probability amplitude of the particle.
d. None of the above.
14. The operator
$\left.d x_{1} \mid x_{1}\right)\left(x_{1} \mid\right.$ is called:
a. An ordinary propagator
b. A propagator
c. An identity operator
d. All of the above
15. A relation between two vector spaces V and W is a map $T: V \rightarrow W$ such that the following holds
$T(\alpha \psi)=\alpha T(v)$, for any scalar α is a:
a. Linear transformation
Non-Linear transformation
c. One- to- one transformation
d. None of the above
16. If vectors are linearly independent and every vector in the vector space is a linear combination of this set, then a set of elements in a vector space V is called:
a. Basis
b. Vector coordinates
c. Set of basis vectors
d. All of the above
17. The transformations that are consistent with the symmetry of space-time form a group known as:
a. Homogeneous Lorentz group
b. Ordinary Lorentz group
c. Poincaré Group
d. None of the above
18. The eight baryons which are symmetrically related are:
a. Irreducible representation of a group SU(3)
b. Reducible representation of a group $\operatorname{SU}(3)$
c. Irreducible representation of a group $\mathrm{SU}(2)$
d. Reducible representation of a group $\mathrm{SU}(2)$
19. All angular momentum multiplets define representations of:
a. $\mathrm{SU}(3)$ group
b. $\mathrm{SU}(2)$ group
c. $\mathrm{SO}(2)$ group
d. $\mathrm{SO}(3)$ group
20. The number of generators of a Lie group is equal to the:
a. Basis of the group
b. Parameter of the group
c. Order of the group
d. None of the above

UNIVERSITY OF SCIENCE \& TECHNOLOGY, MEGHALAYA
[PART (A) : OBJECTIVE]
Duration : $\mathbf{2 0}$ Minutes

Serial no. of the main Answer sheet

Course \qquad

Semester : \qquad Roll No : \qquad

Enrollment No : \qquad Course code : \qquad

Course Title :

Session : \qquad 2017-18 \qquad Date : \qquad

Instructions / Guidelines
$>$ The paper contains twenty (20) / ten (10) questions.
$>$ Students shall tick (\checkmark) the correct answer.
$>$ No marks shall be given for overwrite / erasing.
\rightarrow Students have to submit the Objective Part (Part-A) to the invigilator just after completion of the allotted time from the starting of examination

Full Marks	Marks Obtained
20	

