REV-00 MPH/55/60

2017/12

M.Sc. PHYSICS THIRD SEMESTER MATHEMATICAL PHYSICS-II MPH-301

Duration: 3 Hrs.

Marks: 70

Marks: 50

PART : A (OBJECTIVE) = 20 PART : B (DESCRIPTIVE) = 50

[PART-B : Descriptive]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) & any four (4) from the rest]

- 1. Express the Bessel differential equation. Obtain the solution of Bessel's (1+7+2=10) function. Draw the graphs of the two functions $J_0(x)$ and $J_1(x)$.
- 2. (a) Express the following function in Fourier- Legendre expansion. (4+3+3=10)

f(x) =	0	$-1 \leq x$	≤ 0
f(x) =	1	$0 \leq x$	≤ 1

(b) (i) Prove that:

$$J_{1/2}(x) = \sqrt{\left(\frac{2}{\pi x}\right)} \operatorname{Sin} x$$

(ii) Prove that: $nP_n = (2n-1)xP_{n-1} - (n-1)P_{n-2}$

3.	Obtain the path integral equation for a free particle.	(10)
4.	 (a) State the Orthogonality Theorem and prove it for d ≠d'. (b) What is a unitary group? Show the Unitary representation of a group D₃ and hence show the reducible representation of an equilateral triangle. 	(6+4=10)
5.	(a) Show that there is homomorphism between SU(2) and SO(3)generators.(b) Prove the orthogonality of Bessel function.	(5+5=10)
6.	(a) Write a brief note on Homomorphism and Isomorphism of a group with suitable example.(b) Show that a Group of non-zero complex numbers is a homomorphism.	(7+3=10)
	(a) Prove that: (i) $\frac{d}{dx} [x^n f_n(x)] = x^n f_{n-1}(x)$	(3+7=10)

(ii) Prove that C^{+1}

 $\int_{-1} [P_n(x)] dx = \frac{2}{2n+1}$

(b) Obtain the integral form of Linear harmonic oscillator equation by transformation of its differential form into homogenous Fredholm Integral equation of second kind.

8. (a) If $u(x) = e^{-x^2}$ is a solution of the Volterra integral equation $u(x) = 1 - \alpha \int_0^x t u(t) dt$ (3+3+4=10)

Find a?

(b) Check if $u(x) = x + e^x$ is a solution of the Fredholm integral equation

 $u''(x) = e^x - \frac{4}{3}x + \int_0^1 xt \ u(t) dt; \ u(0) = 1, \ u'(0) = 2$

(c) Prove that $J_n(x)$ is a coefficient of Z^n in the expansion of $e^{x/2(x-\frac{z}{z})}$.

- - *** - -

M.Sc. PHYSICS THIRD SEMESTER MATHEMATICAL PHYSICS-II **MPH-301**

[PART-A: Objective]

Choose the correct answer from the following:

1×20=20

2017/12

- 1. The unitary matrix are precisely those matrices which preserve the Hermitian inner product:
 - a. < v, w > = < Uw, vU >
 - b. $\langle v, w \rangle = \langle Uv, Uw \rangle$
 - c. $\langle v, w \rangle = \langle Uu, wU \rangle$
 - d. $\langle v, w \rangle = \langle Uw, Uw \rangle$
- 2. A function defined by $f(0) = f(2\pi n) = 1$, where $n = 1, 2, \dots, n$, then the function is a:
 - a. Isomorphism
 - c. Homomorphism d. None of the above
- 3. If ab = ba for all a, b of a group G, the multiplication is commutative, and the group is called:

b. Endomorphism

- a. Conjugate subgroup
- b. An abstract group
- c. Cyclic group
- d. An abelian group
- 4. The orthogonality condition of Hermite polynomial for $(m \neq n)$ is given by:

a. $\int_{-\infty}^{+\infty} H_m(x) H_n(x) e^{-x^2} dx = 0$ b. $\int_{-\infty}^{+\infty} \varphi_m(x) \varphi_n(x) \, dx = 0$ c. $\int_{0}^{+\infty} \varphi_m(x) \varphi_n(x) e^{-x^2} dx = 0$ d. $\int_{-\infty}^{+\infty} H_m(x) H_n(x) \sigma^{x^2} dx = 0$

- 5. Choose the incorrect option from the following:
 - a. A cyclic group is also abelian.
 - b. An abelian group is also cyclic.
 - c. If 'a' group possesses an element $a_1 a_2^2, a_3^3, \dots$, then the group is cyclic.
 - d. All of the above.

6. The generating function of Laguerre polynomial L_n is:

a.
$$\sum_{n=0}^{\infty} \frac{L_n(x)}{n(n-1)!} t^n$$

b.
$$\sum_{n=0}^{\infty} \frac{L_n(x)}{n(n+1)!} t^n$$

c.
$$\sum_{n=0}^{\infty} \frac{L_n(x)}{n!} t^n$$

d.
$$\sum_{n=0}^{\infty} \frac{L_n(x)}{(n-1)!} t^n$$

7. The recurrence formula for Bessel function of the form $\frac{d}{dx}(x^n J_n)$ is equal to:

- a. $x^n J_n$
- b. $x^n J_{n+1}$
- c. $x^n J_{n+2}$
- d. $x^n J_{n-1}$

8. The equation $g(x) = f(x) + \int_a^b dt \ K(x, t) f(t)$ is a:

- a. Volterra equation of first kind.
- Volterra equation of second kind. b.
- Fredholm equation of first kind. c.
- Fredholm equation of second kind. d.
- 9. If the unknown appears only under the integral sign, we label it as:
 - a. Volterra equation of first kind.
 - Volterra equation of second kind. b.
 - c. Fredholm equation of first kind.
 - d. Fredholm equation of second kind.

10. $is = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

means $S = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ is a Pauli matrix given by: σ_{χ} $\int_{\mathbf{b}} \sigma_{\mathcal{Y}}$ a. σ_z d. None of the above c.

11. The eight SU(3) generators can be represented in terms of zero-trace Hermitian matrices with

$$S_i = \frac{1}{2} \lambda_i$$

The λ_i are known as:

- a. Diagonal matrices
- c. Gell- Mann matrices

b. Unitary matrices d. All of the above

- 12. If the Kernel K'(x,t) = K(t,x), it is:
 - a. asymmetric b. continuous c. discontinuous d. symmetric
- **13.** The quantity

 $(\mathcal{H}(t-t_n)/\mathbf{h}(x))$

is the:

- Phase of the particle. a.
- State of the object at time 't'. b.
- Probability amplitude of the particle. c.
- None of the above. d.
- 14. The operator
 - $dx_1(x_1)(x_1)$ is called:
 - a. An ordinary propagator b. A propagator
 - c. An identity operator
- d. All of the above
- 15. A relation between two vector spaces V and W is a map $T = V \rightarrow W$ such that the following holds
 - $T(\alpha \mathbf{v}) = \alpha T(\mathbf{v})$, for any scalar α is a:
 - a. Linear transformation
- b. Non-Linear transformation
- One- to- one transformation **d**. None of the above c.
- 16. If vectors are linearly independent and every vector in the vector space is a linear combination of this set, then a set of elements in a vector space *V* is called: a.
 - Basis b. Vector coordinates
 - c. Set of basis vectors **d.** All of the above
- 17. The transformations that are consistent with the symmetry of space-time form a group known as:
 - Homogeneous Lorentz group b. Ordinary Lorentz group a.
 - c. Poincaré Group d. None of the above
- 18. The eight baryons which are symmetrically related are:
 - Irreducible representation of a group SU(3) a.
 - Reducible representation of a group SU(3) b.
 - Irreducible representation of a group SU(2) c.
 - Reducible representation of a group SU(2) d.
- 19. All angular momentum multiplets define representations of:
 - a. SU(3) group b. SU(2) group
 - c. SO(2) group d. SO(3) group
- 20. The number of generators of a Lie group is equal to the:
 - Basis of the group b. Parameter of the group a.
 - c. Order of the group
- d. None of the above

	[PART (A) : OBJECTIVE] Duration : 20 Minutes	Serial no. of the main Answer sheet
Oneolling Excellence		
	Roll No :	,
Enrollment No :	Course code :	
Course Title :		
Session : 2017-1	8 Date :	
	Instructions / Guidelines	*****
	venty (20) / ten (10) questions.	
Students shall tick (✓)) the correct answer.	
➤ No marks shall be give	en for overwrite / erasing.	
Students have to subm	nit the Objective Part (Part-A) to the inv	vigilator just after

Full Marks	Marks Obtained
20	

Scrutinizer's Signature

Invigilator's Signature

= = *** = =