REV-00 MPH/68/80

M. Sc. Physics FIRST SEMESTER QUANTUM MECHANICS -I MPH - 103

Duration: 3 Hrs.

Marks: 70

Part : A (Objective) = 20 Part : B (Descriptive) = 50

[<u>PART-B: Descriptive</u>]

Duration: 2 Hrs. 40 Mins.

Marks: 50

[Answer question no. One (1) & any four (4) from the rest]

- 1.a) Explain with proper examples the meaning of wave particle
duality. Discuss how Schrodinger established the validity of it.3+2=5
 - b) (i) Show that the wavelength of the quantum wave associated with the electron accelerated through a potential difference of 150 volts lies in X-ray range.

(ii)Calculate momentum of the electron of 100 electron volt 2+3=5 energy.

- Write down the Schrodinger wave equation for a particle of mass 'm' 2+3+2+3 confined in a box of length 'a' such that V=0 for 0 ≤ x ≤ a and v=α for =10 x ≤ 0 and ≥ a. Deduce the expression for wave function and energy. Calculate ground state energy of the electron in a box of size 10⁻¹⁴ meter in S.I unit.
- a) What do you mean by Hermitian operator? Prove that two 1+4=5 eigen function of a Hermitian operator belonging to different eigen values are orthogonal.
 - b) (i) Examine if d²/dx² is a Hermitian operator. 2+3=5
 (ii)Calculate the average value of the momentum of a particle confined in a length 'a'.

2017/12

What do you mean by identical particles? Distinguish between classical 2+2+2+1 and quantum identical particles. Define particle exchange operator and +3=10 calculate the eigen values of the particle exchange operator.

3+2=5

- 5. (a) Evaluate the following commutators.
 - I. $[\hat{L}_+, \hat{L}_-]$ II. $[\hat{L}_Z, \hat{L}_\pm]$

(b) Find the equation of motion in Heisenberg representation.

- (a) Show that spherical harmonics are eigen functions of L² and L_z. 3+2=5
 Write the eigen values of both the operators.
 - (b) (i) Give the relation between the spin angular momentum and spin magnetic moment. What are pauli's spin matrices?

(ii) Prove that $[\sigma_x, \sigma_y] = 2i\sigma_z$

7. (i) What do you mean by symmetric and antisymmetric wave function? 1+1+2+1
 Explain exchange energy. Discuss how spin statistics are connected with +1=6
 symmetric and antisymmetric wave functions.

(ii) How can you contruct symmetric and antisymmetric wave function 2+2=4 from unsymmetric wavefunction ?

 (i) Define radial probability density of finding the electron of the hydrogen atom at a distance 'r' and write the expression of it. Calculate the position of maximum probability of finding the electron in its ground state.

(ii) A proton is confined to a nucleus of radius 5×10^{-15} m. Calculate 2+2=4 the uncertainty in its momentum and minimum kinetic energy of the proton (mass of the proton is 1.67×10^{-27} kg).

==***==

M. Sc. Physics FIRST SEMESTER QUANTUM MECHANICS -I MPH - 103

[PART-A : Objective]

Choose the correct answer from the following:

1×20=20

- 1. The acceptable wave function is
 - a. $\psi = \sin x$
 - b. $\psi = \tan x$
 - c. $\psi = \operatorname{cosec} x$
 - d. $\psi = x$
- 2. The ratio $N_n=2: N_n=1$ [N_n is the number of nodes in a state with quantum number n for a particle in a 1-D box] is

a. 0 .	c. 2
b. 1	d. zero

- 3. The energy of a particle in a 2-D box of size 'A' is 9h²/4ma². The degree of degeneracy is
 a. 1
 c. 3
 - b. 2 d. 4
- 4. Which of the following is NOT a physical requirement for an acceptable wave function.a. Symmetricc. Square integrable
 - b. Single valued d. Continuous in the given region
- 5. The speed of the de brogile wave of a particle of mass 'm' and momentum mv is
 - a. $\frac{c^2}{v}$ b. $\frac{c}{v^2}$ [C= velocity light]
- 6. The energy required to excite a particle of mass 'm' confined in a length 'l' to the first excited state is

a.	$h^2/2ml^2$	c. $h^2/4ml^2$
b.	3h ² /8ml ²	d. l ² /2mh ²

- 7. An orbital is a/an
 - a. operator

b. one electron wave function

c. circular tract d. observable property

8.	Conjugate of an op	perator $\hat{A} = \hbar \frac{d}{d}$	$\frac{d}{dx}$ is $\hbar \frac{d}{dx}$. Then conj	ugate of the operat	or
	$\hat{o} = i\hbar \frac{d}{dx}$				
	a sta		a B d		
	$\int_{-\frac{d}{dx}}^{d} dx$		d. $-\hbar \frac{d}{dx}$		
9.	dx Two functions are	orthogonal if th	dx eir inner product is		
	a. n 2		c1		
	b. Zero		d. 1		
10.	The eigenvalue of	\widehat{P}_{21} is			
	a. Zero		c. +1		
	b. ± 1		d1		

11. The operator of kinetic energy in one dimension is

a. $i\hbar \frac{\partial}{\partial x}$	ð			\hbar^2	∂^2
	c. $-\frac{1}{2m}$	-2m	∂x^2		

- b. $-i\hbar \frac{\partial}{\partial x}$ d. $\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$
- 12. The commutation relation between position and momentum operator is **a.** $\left[q_{ij}, p_k\right] = 0$
 - $\begin{array}{l} \text{c.} & \left[q_{ij}, p_k \right] = i \hbar \delta_{jk} \\ \text{d.} & \left[q_{ij}, p_k \right] = -i \hbar \delta_{jk} \end{array}$

b. $[q_{ij}, p_k] = 1$

- 13. If $\widehat{P_{y}} = -i\hbar\frac{\partial}{\partial y}$ then $\widehat{P_{y}^{3}}$ is a. $-i\hbar^{3}\frac{\partial^{3}}{\partial y^{3}}$
 - b. $-i\hbar \frac{\partial^3}{\partial y^3}$ d. $i\hbar \frac{\partial^3}{\partial y^3}$

c. $i\hbar^3 \frac{\partial^3}{\partial y^3}$

2017/12

		UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA
14. The exchange energy between two elea. Same spinb. Opposite spin	ectrons is related when they have c. Same spin in degenerate orbital d. Opposite spin in non degenerate orbital.	[PART (A) : OBJECTIVE] Serial no. of the main Answer sheet Duration : 20 Minutes Serial no. of the main Answer sheet
15. 2 s orbital of hydrogen atom has a no	de at $2a_0$, because ψ_{2s} is proportional to	
a. $(2 + \frac{r}{a_0})$	c. $(1 + \frac{r}{2a_0})$	Course :
b. $(2 - \frac{r}{2a_0})$	d. $(2 - r/a_0)$	Semester : Roll No :
16. Two operators \widehat{A} as $\widehat{A}(c\psi) = c(\widehat{A}\psi) and \widehat{B}\psi = \psi *$	nd \widehat{B} satisfy the equations (c is a constant).	Enrollment No : Course code :
Select the correct statement from	n the following:	
a. \widehat{A} and \widehat{B} are Hermitian	c. \widehat{B} is linear but \widehat{A} is not	Course little :
b. \widehat{A} and \widehat{B} are commute	d. \widehat{A} is linear but \widehat{B} is not	Session : 2017-18 Date :
17. The lowest energy is zero for aa. Hydrogen atomb. Particle in 1-D boxc. Simple harmonic oscillatord. Particle in a ring		 Instructions / Guidelines The paper contains twenty (20) / ten (10) questions.
18. Which of the following obey Fermi-D	irac statistics?	> Students shall tick (\checkmark) the correct answer.
a. Pion (π^+) b. Kaon (k^+)	c. η meson d. Muon (μ ⁻)	 No marks shall be given for overwrite / erasing. State of the state of
19. The expectation value of the observal a. $< 0 >= \int_{-1}^{1} \psi * \psi d \Upsilon$	ble 0 is given by c. $< 0 >= \int_{-\infty}^{\infty} \psi \hat{0} \psi d \mathcal{F}$	Students have to submit the Objective Part (Part-A) to the invigilator just after completion of the allotted time from the starting of examination.
b. $< 0 >= \int_{*}^{\infty} \psi * \hat{0} \psi dY$ [\hat{O} = operator of the observable	$d. < 0 >= \int_{-\infty}^{\infty} \psi \hat{0} \psi d Y$	Full Marks Marks Obtained
20. If the operator \widehat{A} commutes with the	operator \widehat{B} then	20

- a. \widehat{A} and \widehat{B} are equal
- b. \widehat{A} and \widehat{B} are skew- hermitian
- ^{c.} \widehat{A} and \widehat{B} have common set of eigen values ^{d.} \widehat{A} and \widehat{B} have the common set of eigenfunctions.

==***==

Scrutinizer's Signature

Examiner's Signature

Invigilator's Signature