REV-00 MPH/68/75

M. Sc. PHYSICS FIRST SEMESTER CLASSICAL MECHANICS MPH - 102

Duration: 3 Hrs.

Marks: 70

Part : A (Objective) = 20 Part : B (Descriptive) = 50

[PART-B: Descriptive]

Duration: 2 Hrs. 40 Mins.

Marks: 50

[Answer question no. One (1) & any four (4) from the rest]

1.	a) State D'Alembert's principle.	1+6+3=
	b) Derive Lagrange's equation from D'Alembert's principle.	10
	c) Construct the equation of motion for a simple pendulum with the help	
	of Lagrange's equation.	
2.	a) Applying variational principle, show that the shortest distance	5+5=10
	between two points in a plane is a straight line.	
	b) A particle of mass m falls a given distance z in time $t = \sqrt{2z}$ and the	
	b) A particle of mass mining a given distance z_0 in time $t_0 = \sqrt{\frac{1}{g}}$ and the	
	distance travelled in time t is given by $z = at + bt^2$, where constants a	
	and b are such that the time t- is always the same Show that the	
	interpreter (¹ 0.1) is an entropy for a log of the solid	
	integration j _o ⁻ Lat is an extremum for real values of the coefficients only	
	when $a = 0$ and $b = g/2$.	
2	a) Obtain the canonical transformation equations corresponding to	E+2+2-
5.	a) Obtain the canonical transformation equations corresponding to	5+2+3=
	generating function of the form $r(q_k, q_k, t)$.	10
	b) Show that the function $F = \sum_{i} q_{i}P_{i}$ generates the identity	
	transformation.	
	c) Prove that the following transformation is canonical	
	$Q = \sqrt{2q} e^{\alpha} \cos p; P = \sqrt{2q} e^{-\alpha} \sin p.$	
4.	a) If $[\phi, \psi]$ represents the Poisson's bracket between two functions ϕ	4+4+2=
	and ψ , then prove that	10

$$\frac{\partial}{\partial t}[\phi,\psi] = \left[\frac{\partial\phi}{\partial t},\psi\right] + \left[\phi,\frac{\partial\psi}{\partial t}\right].$$

- b) Prove the following relations: (i) $[J_{\mathcal{V}}, J_z] = J_x$
 - (ii) $\sum_{k=1}^{n} \{q_{k'} q_i\} [q_{k'} q_j] + \sum_{k=1}^{n} \{p_{k'} q_i\} [p_{k'} q_j] = \delta_{ij}$

5. Define inertia tensor and principal axes. 4+1+5= Considering the origin at one corner and the axes along the edges of a 10 homogeneous cube having density ρ , mass M, and sides a, determine the inertia tensor.

10

- 6. State and establish Bernoulli's equation for an incompressible liquid. 6+2+2= Water flows along a horizontal pipe, which cross-section is not uniform along the length. If the pressure is $1334 N/m^2$ when velocity is 35 cm/s, then find the pressure at a point where the velocity is 65 cm/s (density of water 1gm/cm³).
- 7. Two identical harmonic oscillators, each of mass m, are coupled 4+6=10together. Set up the equations of motion and obtain the general solutions for the system of coupled oscillators ...
- 8. Solve the problem of one-dimensional harmonic oscillator using 10 Hamilton-Jacobi method.

==***==

REV-00 MPH/68/75

> M. Sc. PHYSICS FIRST SEMESTER CLASSICAL MECHANICS MPH – 102

[PART-A: Objective]

Choose the correct answer from the following:

1.	Ar	rigid	body moving free	y in space has	degrees o	of freedom
	a.	3		5 K N	c. 9	
	b.	6			d. 4	

- 2. Generalised momenta p_i is associated with generalised coordinate q_i as
 - a. $p_j = \frac{\partial L}{\partial q_j}$ b. $p_j = \frac{\partial L}{\partial q_j}$ c. $p_j = \frac{\partial H}{\partial q_j}$ d. $p_j = \frac{\partial H}{\partial q_j}$

3. In case of inertia tensor, I_{xy} is expressed as

- a. $I_{xy} = \sum_{i} m_{i} x_{i} y_{i}$ b. $I_{xy} = -\sum_{i} m_{i} x_{i} y_{i}$ c. $I_{xy} = -\sum_{i} m_{i} (x_{i}^{2} + y_{i}^{2})$ d. $I_{xy} = 0$
- 4. If a particle moves near the surface of earth under a coordinate system (x, y, z) where z axis is in vertical direction, then the equation of motion in z-axis is given by
 a. mz + mg = 0
 - b. $m\ddot{z} \dot{p}_z = 0$ c. $m\ddot{z} - \dot{p}_r = 0$
 - d. $m\ddot{z} \dot{p}_v = 0$
- 5. The precessional period of a symmetrical rigid body about the symmetry axis is
 - a. $T = \frac{2\pi}{\Omega}$ b. $T = \frac{2\pi}{\omega}$ c. $T = \frac{\omega}{2\pi}$ d. $T = \frac{l_1}{l_2 - l_1}$

8

2017/12

 $1 \times 20 = 20$

6. Equation of catenaries are be given by ('a' being a constant)

a.
$$y = a \cos\left(\frac{x}{a}\right)$$

b. $y = a \sin\left(\frac{x}{a}\right)$
c. $y = a \sinh\left(\frac{x}{a}\right)$
d. $y = a \cosh\left(\frac{x}{a}\right)$

7. If the generalized coordinate is an angle θ , the corresponding generalized force has the dimension of

a.	force	c. torque
b.	Momentum	d. energy

Pro	operty of an ideal fluid is/are	
a.	incompressible	c. non-viscous
b.	laminar flow	d. all of these

- 9. According the Bernoulli's theorem, pressure energy + kinetic energy + potential energy = _____ (choose the correct option)
 a. 0 c. a constant
 b. ∞ d. None of these
- 10. If the Lagrangian does not depend on time explicitly, then the
 - a. Hamiltonian is constant
 - **b.** Hamiltonian cannot be constant
 - c. kinetic energy is constantd. potential energy is constant
 - d. potential energy is constant
- 11. The condition satisfying canonical transformation is
 - a. $\delta p dq \delta q dp = 0$
 - b. $\delta p dQ \delta q dP = \delta P dq \delta q dP$
 - c. $\delta p dq \delta q dp = \delta P dQ \delta Q dP$
 - d. $\delta q \delta p dq dp = \delta Q \delta P dQ dP$
- 12. For a generating function of the form F(p_k, P_k, t), the transformation equations will be
 a. q_k = -∂F/∂p_k, Q_k = ∂F/∂P_k
 b. q_k = ∂F/∂p_k, Q_k = ∂F/∂P_k
 c. q_k = -∂F/∂p_k, Q_k = -∂F/∂P_k
 d. q_k = ∂F/∂p_k, Q_k = -∂F/∂P_k
- **13.** Hamilton's principle function S and Hamilton's characteristic function W for a conservative system are related as
 - a. S = W
 - b. S = W Et
 - c. S = W + Et
 - d. S is not related to W

- 14. If the Poisson bracket of a function with the Hamiltonian vanishes, then
 - a. the function depends upon time
 - b. the function is a constant of motion
 - **c.** the Hamiltonian is zero
 - **d.** the function is undefined
- 15. The value of the Poisson's bracket $[l_x, x]$ is
 - (where terms have their usual meaning)
 - a. -1
 - **b**. 0
 - c. $-p_x$
 - d. 1y
- 16. The general motion of two coupled identical pendulums oscillating in a plane will be
 - a. a damped harmonic motion
 - b. a motion of neutral equilibrium
 - c. the superposition of two simple harmonic motions of same frequency
 - d. the superposition of two simple harmonic motions of different frequency
- 17. The phase space refers to
 - a. position coordinate
 - b. momentum coordinate
 - c. both position and momentum coordinates
 - d. time coordinate
- 18. The action and angle variables have the dimensions of
 - a. force and angle
 - b. angular momentum and angle
 - c. energy and angle
 - d. position and momentum.
- 19. In case of a linear triatomic molecule XY₂ type, the eigen frequencies ω_1, ω_2 and ω_3 can
 - be represented as
 - a. $\omega_1 = 0, \omega_2 \neq \omega_3$
 - b. $\omega_1 = \omega_2 = \omega_3$
 - c. $\omega_1 = 0, \omega_2 = \omega_3$
 - d. $\omega_1 = 1, \omega_2 = \omega_2$
- 20. An example of stable equilibrium is
 - a. an egg standing on one end
 - b. a hanging spring-mass system in the stationary position
 - **c.** a book placed flat anywhere on a table
 - d. none of the above.

ereiting Exectine	[PART (A) : OBJECTIVE] Duration : 20 Minutes		Serial no. of the main Answer sheet
ourse :			
emester :		Roll No :	
rollment No :		Course code :	
ourse Title :			
ession :	2017-18	Date :	
*******	*******	***************************************	*****

- > Students shall tick (\checkmark) the correct answer.
- > No marks shall be given for overwrite / erasing.
- > Students have to submit the Objective Part (Part-A) to the invigilator just after completion of the allotted time from the starting of examination.

Full Marks	Marks Obtained
20	

Scrutinizer's Signature

==***==