M. Sc. PHYSICS
 FIRST SEMESTER CLASSICAL MECHANICS MPH - 102

Duration: 3 Hrs.
Marks: 70

$$
\begin{gathered}
\text { Part : A }(\text { Objective }=20 \\
\text { Part : B (Descriptive) }=50 \\
\text { [PART-B : Descriptive] }
\end{gathered}
$$

Duration: 2 Hrs. 40 Mins.

Marks: 50

[Answer question no. One (1) \& any four (4) from the rest]

1. a) State D^{\prime} Alembert's principle. $1+6+3=$
b) Derive Lagrange's equation from D'Alembert's principle.
c) Construct the equation of motion for a simple pendulum with the help of Lagrange's equation.
2. a) Applying variational principle, show that the shortest distance between two points in a plane is a straight line.
b) A particle of mass m falls a given distance z_{\square} in time $t_{0}=\sqrt{\frac{2 z_{g}}{g}}$ and the distance travelled in time t is given by $z=a t+b t^{2}$, where constants a and b are such that the time t_{0} is always the same. Show that the integration $\int_{0}^{t_{0}} L d t$ is an extremum for real values of the coefficients only when $a=0$ and $b=g / 2$.
3. a) Obtain the canonical transformation equations corresponding to
$5+2+3=$ 10 generating function of the form $F\left(q_{k}, Q_{k}, t\right)$.10
b) Show that the function $F=\sum_{i} q_{i} p_{i}$ generates the identity transformation.
c) Prove that the following transformation is canonical $Q=\sqrt{2 q} e^{\alpha} \cos p ; \quad P=\sqrt{2 q} e^{-\alpha} \sin p$.
4. a) If $[\phi, \psi]$ represents the Poisson's bracket between two functions $\phi \quad 4+4+2=$ and ψ, then prove that

$$
\frac{\partial}{\partial t}[\phi, \psi]=\left[\frac{\partial \phi}{\partial t}, \psi\right]+\left[\phi, \frac{\partial \psi}{\partial t}\right]
$$

$$
\frac{\partial}{\partial t}[\phi, \psi]=\left[\frac{\partial \phi}{\partial t}, \psi\right]+\left[\phi, \frac{\partial \psi}{\partial t}\right]
$$

b) Prove the following relations:
(i) $\left[J_{y} J_{z}\right]=J_{x}$
(ii) $\sum_{n=1}^{n}\left\{q_{k} q_{i}\right\}\left[q_{k} q_{j}\right]+\sum_{n=1}^{n}\left\{p_{k}, q_{i}\right\}\left[p_{n} q_{j}\right]=\delta_{i j}$
5. Define inertia tensor and principal axes.
$4+1+5=$
Considering the origin at one corner and the axes along the edges of a homogeneous cube having density ρ, mass M, and sides a, determine the inertia tensor.
6. State and establish Bernoulli's equation for an incompressible liquid.

Water flows along a horizontal pipe, which cross-section is not uniform along the length. If the pressure is $1334 \mathrm{~N} / \mathrm{m}^{2}$ when velocity is $35 \mathrm{~cm} / \mathrm{s}$, then find the pressure at a point where the velocity is $65 \mathrm{~cm} / \mathrm{s}$ (density of water $1 \mathrm{gm} / \mathrm{cm}^{3}$).
7. Two identical harmonic oscillators, each of mass m, are coupled together. Set up the equations of motion and obtain the general solutions for the system of coupled oscillators..
8. Solve the problem of one-dimensional harmonic oscillator using 10 Hamilton-Jacobi method.

$$
==* * *==
$$

M. Sc. PHYSICS
 FIRST SEMESTER CLASSICAL MECHANICS

MPH - 102

PART-A: Objective

Choose the correct answer from the following:

1. A rigid body moving freely in space has degrees of freedom
a. 3
b. 6
c. 9
d. 4
2. Generalised momenta $p_{\text {j }}$ is associated with generalised coordinate q_{j} as
a. $p_{j}=\frac{\partial L}{\partial q_{j}}$
b. $p_{j}=\frac{\partial L}{\partial q_{j}}$
c. $p_{j}=\frac{\partial H}{\partial q_{j}}$
d. $p_{i}=\frac{\partial A_{i}}{\partial q_{j}}$
3. In case of inertia tensor, $I_{x y}$ is expressed as
a. $I_{x y}=\sum_{i} m_{i} x_{i} y$
b. $I_{x y}=-\sum_{i} m_{i} x_{i} y_{i}$
c. $I_{x y}=-\sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)$
d. $I_{x y}=0$
4. If a particle moves near the surface of earth under a coordinate system (x, y, z) where z axis is in vertical direction, then the equation of motion in z -axis is given by
a. $m z+m g=0$
b. $m z z^{*}-p_{z}=0$
c. $m \ddot{z}-p_{x}=0$
d. $m \ddot{z}-p_{y}^{\prime}=0$
5. The precessional period of a symmetrical rigid body about the symmetry axis is
a. $T=\frac{\pi \pi}{n}$
b. $T=\frac{2 \pi}{3}$
c. $T=\frac{\omega}{2 \pi}$
d. $T=\frac{l_{1}}{l_{3}-l_{1}}$
6. Equation of catenaries are be given by ('a' being a constant)
a. $y=a \cos \left(\frac{x}{a}\right)$
b. $y=a \sin \left(\frac{x}{a}\right)$
c. $y=a \sinh \left(\frac{x}{a}\right)$
d. $y=a \cosh \left(\frac{x}{a}\right)$
7. If the generalized coordinate is an angle θ, the corresponding generalized force has the dimension of
a. force
c. torque
b. Momentum

8. Property of an ideal fluid is/are
a. incompressible
c. non-viscous
b. laminar flow
d. all of these
9. According the Bernoulli's theorem, pressure energy + kinetic energy + potential energy $=$ \qquad (choose the correct option)
a. 0
c. a constant
b. ∞
d. None of these
10. If the Lagrangian does not depend on time explicitly, then the
a. Hamiltonian is constant
b. Hamiltonian cannot be constan
c. kinetic energy is constant
d. potential energy is constant
11. The condition satisfying canonical transformation is
a. $\delta p d q-\delta q d p=0$
b. $\delta q d Q-\delta q d P=\delta P d q-\delta q d P$
c. $\delta p d q-\delta Q d p=\delta P d Q-\delta Q d P$
d. $\delta q \hat{q} p-d q d p=\delta Q \delta P-d Q d P$
12. For a generating function of the form $F\left(\eta_{n}, P_{k}, t\right)$, the transformation equations will be a. $q_{k}=-\partial F / \partial p_{k}, Q_{k}=\partial F / \partial P_{k}$
b. $q_{k}=\partial F / \partial \eta_{k}, Q_{k}=\partial F / \partial P_{k}$
c. $q_{k}=-\partial F / \partial p_{k}, Q_{k}=-\partial F / \partial p_{k}$
d. $q_{k}=\partial F / \partial \eta_{k}, Q_{k}=-\partial F / \partial F_{k}$
13. Hamilton's principle function S and Hamilton's characteristic function \mathbb{W} for a conservative system are related as
a. $s=W$
b. $S=W-E t$
c. $S=W+E t$
d. S is not related to W
14. If the Poisson bracket of a function with the Hamiltonian vanishes, then
a. the function depends upon time
b. the function is a constant of motion
c. the Hamiltonian is zero
d. the function is undefined
15. The value of the Poisson's bracket $\left[J_{x}, \bar{x}\right]$ is
(where terms have their usual meaning)
a. -1
b. 0
c. $-p_{x}$
d. l_{y}
16. The general motion of two coupled identical pendulums oscillating in a plane will be a. a damped harmonic motion
b. a motion of neutral equilibrium
c. the superposition of two simple harmonic motions of same frequency
d. the superposition of two simple harmonic motions of different frequency
17. The phase space refers to
a. position coordinate
b. momentum coordinate
c. both position and momentum coordinates
d. time coordinate
18. The action and angle variables have the dimensions of
a. force and angle
b. angular momentum and angle
c. energy and angle
d. position and momentum.
19. In case of a linear triatomic molecule $X Y_{2}$ type, the eigen frequencies ω_{1}, ω_{2} and ω_{3} can be represented as
a. $\omega_{1}=Q_{1}, \omega_{2} \neq \omega_{3}$
b. $\omega_{1}=\omega_{2}=\omega_{3}$
c. $\omega_{1}=0, \omega_{2}=\omega_{3}$
d. $\omega_{1}=1, \omega_{2}=\omega_{2}$
20. An example of stable equilibrium is
a. an egg standing on one end
b. a hanging spring-mass system in the stationary position
c. a book placed flat anywhere on a table
d. none of the above.

UNIVERSITY OF SCIENCE \& TECHNOLOGY, MEGHALAYA
[PART (A) : OBJECTIVE]
Duration : $\mathbf{2 0}$ Minutes
Serial no. of the main Answer sheet

Course : \qquad

Semester: \qquad Roll No :

Enrollment No : \qquad Course code : \qquad

Course Title :

\qquad

Session: \qquad 2017-18 \qquad Date : \qquad

Instructions / Guidelines

```
\(>\) The paper contains twenty \((20)\) / ten (10) questions.
\(>\) Students shall tick \((\checkmark)\) the correct answer.
\(>\) No marks shall be given for overwrite / erasing.
\(>\) Students have to submit the Objective Part (Part-A) to the invigilator just after
    completion of the allotted time from the starting of examination.
```

Full Marks	Marks Obtained
20	

