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[Answer question no. One (1) & ~nJ' four (4) from the rest J

1. a) Write the characteristic equation of the matrix A.

[
4 -2 -2]

b) Find the Eigen values of the matrix -s 3 2.
-2 -4 1

[
4

c) Find the characteristic equation of the matrix A = ~
the value of A-t.

~ ~2] and the find

2. a) Define hermitian and skew hermitian matrices.
b) What is the necessary and sufficient condition for a matrix to be

hermitian.

[
1 l-i 21

c) Show that A = 1 + i 3 i is hermitian.
2 -i 0

[
l+t Z 5-5il·

d) Express the matrix A = 2i 2 + i 4 +72i as the sum of
-1 +i -4

hermitian and skew hermitian matrices.

3. a) Find the Laplace transformation of (1 + si.n2t).
b) Using Laplace transformation find the initial value problem

y" --4y' + 4y = 64sin2t; y(O) = 0, y'(O) = 1.

4. a) Show that any tensor of rank 2 can be expressed as a sum of a symmetric
and an antisymmetric tensor, both of rank 2.

b) If kfL and are any two vectors, one contravariant and the other covariant,
prove that their outer product is invariant.
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5+5=10

4+2+4
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c) Using the tensor identity Eijk.E ipq= Ojpoi.q - OjqOkp, prove the following

vector identity
A X (8 xC) = 8(1- C) -c(1· 8).

5. a) Write down the components of metric tensor in sphericai polar coordinate.
Show thatct9J!~ =-Bp,a9vpdgflll

•

b) Define Christofell's symbols of first and second kind. Show that
rc _gCArj.!v- lI..pv.

6. Obtain a solution of Laplace's equation in spherical polar coordinates.

7. (a) For z=x+iy, verify if the function (l/z) is analytic or not?
(b) Show that for a function f(z); where z=x+iy,

4ic f(z)tf.z = ~C1 [(z}d£;
Where c and c, are two closed concentric contours of radius R and r, (R>r).

8. Iff(z) is an analytical complex function encompassing the area inside the
contour C. then proof that

fez) = 1/2 m ~~~dz],
for the circle being traverse counterclockwise.
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Choose the correct answer from the following: lx20=20

1. A square matrix A is said to be orthogonal ifit follows
a. if ·jL4T = 1 c. ,iT' = 1

.4

b. A ..-iT = 1 d. (.4+A)' = [

2. If A and B are two square matrices of same order, such that AB = BA = 1, then
the vectors are of each other. (Fill in the black).

a. transpose c. orthogonal
b. inverse d. conjugate

3. The Eigen values of the matrix G ~] are

a. 1, O

b. 1,1
e. tz
d. 0,2

4. The necessary and sufficient condition for matrix A to be Hermitian is
a. .4 = .4 c.•4 = .4T

b. A = .4T d. A = A.-1

5. If A and B are two square matrices of same order, and if there exist a non-singular
matrix P, then similarity transformation holds the following relation

a. B = AP c. B = P-l.4P
b. B = AP-l d. B = (PA)-1p

6. The two vectors X and Y in Real space are orthogonal if they follow the relation
a. x. y = 0 c. X.Y = !

2:

b. X. Y = 1 d. X. Y = ::
2

7. Laplace transformation ofgQ.r is
a. !

a
b. 1

a+t

c.~
3-0

d. 1
3+a

8. Inverse Laplace transformation of ! is
iii

a. 0
b. 1
c. 00

d. e.-51

9. The number of independent components of an antisymmetric tensor of rank 2 in
n-dimensional space is

a. n2

b. n(n + 1)
2

c. n+l
d. nett. -1}

2

10. The contraction of a tensor A~ produces a
a. a scalar
b. a covariant tensor of rank 2
c. a vector
d. a mixed tensor of rank 2

11. The value of the identity 0a,Z(k1'1l is

a. 3
b. 0

c. -1
d.+l

12. The condition of orthogonality of two tensors AIL and Rv of rank 1 is given by
a. BjIvAPB'" = 0
b. Bp.vAPBv = 1
c. Bp", AilE v = -1
d. none of the above

13. If g~Ut = (l for 11 *- \I and 11, \',<0" are unequal indices, then the value of r~~~is
a. 0 lotJl4l

c. 2 ()xv

l1:JO)l.¥
d. zax)!

b.

14. Which of the following equations represents the Laplace's equation is
a. o?cp = 0 C. 'i/'J..rp=O
b. !fl2tp:: {J d. V2¢= f.;2:q,



15. If a function [ex) is defined at x =; 0, then the value of the expression
J~=f(x) o(x) dx is (here, 8(%) is the Dirac-Delta function) UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

a. 1
b. f(O)
c. -{leD)

d. 0

[PART (A) : OBJECTIVE]

Duration: 20 Minutes

Serial no. of the
main Answer sheet

Course : .
16. Which of the following statement is not true for the Green's function G(x,t)

a. G(x,t) is a continuous function ofx
b. The first derivative of Green's function is a discontinuous function
c. Green's function is discontinuous at x = t
d. Green's function is a characteristics of the given boundary conditions

Semester : Roll No : .

Enrollment No : Course code : .
17. If vex, y)+iu(x, y) a complex function for a complex variable z=x+iy, then the

Cauchy Riemann conditions are
a. ~_~

OV - at~
b. au OV

ay = ox
c. 1711 au

ax = - By
d. au a·v

ax = a}'

Course Title:

Session : JQJZ:-J!L Date : .

.........................................................................................................

18. According to Cauchy's integral theorem

a. fez") = 1/2 :Iliff!~~dz]

b. f f(z)clz = 0

c. f f(z)clz = 1,

d. f f(z)cf.z = a:

> The paper contains twenty (20) I ten (10) questions.

> Students shall tick (,.1") the correct answer.

> No marks shall be given for overwrite I erasing.

> Students have to submit the Objective Part (Part-A) to the invigilator just after

completion of the allotted time from the starting of examination.

19. Example of a complex function is
a. z=x+iy,
b. z=x+y,

c. U(x,y)+iV(x, y),
d. U(x,y)+V(x, y),

20. Example of a complex variable
a. z=x+iy,
b. z=x+y,

c. U(x,y)+iV(x, y),
d. U(x,y)+V(x, y),
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