M. Sc. Physics
 FIRST SEMESTER
 Mathematical Physics-I
 MPH-101

Duration: 3 Hrs.
Marks: 70
$\left\{\begin{array}{l}\text { Part : A }(\text { Objective })=20 \\ \text { Part: } \mathbf{B}(\text { Descriptive })=50\end{array}\right\}$
[PART-B: Descriptive]
Duration: $\mathbf{2}$ Hrs. $\mathbf{4 0}$ Mins.
Marks: 50

[Answer question no. One (1) \& any four (4) from the rest]

1. a) Write the characteristic equation of the matrix A.

$$
1+4+5
$$

b) Find the Eigen values of the matrix $\left[\begin{array}{ccc}4 & -2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1\end{array}\right]$.
c) Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1\end{array}\right]$ and the find the value of A^{-1}.
2. a) Define hermitian and skew hermitian matrices.
b) What is the necessary and sufficient condition for a matrix to be hermitian.
c) Show that $A=\left[\begin{array}{ccc}1 & 1-i & 2 \\ 1+i & 3 & i \\ 2 & -i & 0\end{array}\right]$ is hermitian.
d) Express the matrix $A=\left[\begin{array}{ccc}1+i & 2 & 5-5 i \\ 2 i & 2+i & 4+2 i \\ -1+i & -4 & 7\end{array}\right]$ as the sum of hermitian and skew hermitian matrices.
3. a) Find the Laplace transformation of $(1+\sin 2 t)$.
b) Using Laplace transformation find the initial value problem $y^{\prime \prime}-4 y^{t}+4 y=64 \sin 2 t ; y(0)=0, y^{\prime}(0)=1$.
4. a) Show that any tensor of rank 2 can be expressed as a sum of a symmetric $4+2+4$ and an antisymmetric tensor, both of rank 2.
b) If A^{μ} and are any two vectors, one contravariant and the other covariant, prove that their outer product is invariant.
c) Using the tensor identity $\epsilon_{i j k} \epsilon_{i p q}=\delta_{j p} \delta_{k q}-\delta_{j q} \delta_{k p}$, prove the following vector identity

$$
\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})
$$

5. a) Write down the components of metric tensor in sphericai polar coordinate. $2+4+2+2$ Show that $d g_{\alpha \beta}=-g_{\mu \alpha} g_{v \beta} d g^{\mu v}$.
b) Define Christofell's symbols of first and second kind. Show that

$$
\Gamma_{\mu \nu}^{\sigma}=g^{\sigma \lambda_{\lambda, \nu v}}
$$

6. Obtain a solution of Laplace's equation in spherical polar coordinates.

$$
10
$$

7. (a) For $z=x+i y$, verify if the function $(1 / z)$ is analytic or not?
(b) Show that for a function $\mathrm{f}(\mathrm{z})$; where $\mathrm{z}=\mathrm{x}+\mathrm{iy}$,

$$
\oint_{c} f(z) d z=\oint_{c 1} f(z) d z ;
$$

Where c and c_{1} are two closed concentric contours of radius R and $\mathrm{r},(\mathrm{R}>\mathrm{r})$.
8. If $f(z)$ is an analytical complex function encompassing the area inside the contour C, then proof that

$$
f(z)=1 / 2 \pi i\left[\oint \frac{f(z)}{z-a} d z\right]
$$

for the circle being traverse counterclockwise.

M. Sc. Physics
 FIRST SEMESTER
 Mathematical Physics - I
 MPH-101

[PART-A: Objective]

Choose the correct answer from the following:

1. A square matrix A is said to be orthogonal if it follows
a. $A+A^{T}=I$
b. $A \cdot A^{T}=I$
c. $\frac{A}{A^{T}}=I$
d. $(A+\bar{A})^{T}=I$
2. If A and B are two square matrices of same order, such that $A B=B A=I$, then the vectors are \qquad of each other. (Fill in the black).
a. transpose
c. orthogonal
b. inverse
d. conjugate
3. The Eigen values of the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ are
a. 1,0
b. 1,1
c. 1,2
d. 0,2
4. The necessary and sufficient condition for matrix A to be Hermitian is
a. $A=\bar{A}$
b. $A=A^{T}$
c. $A=A^{T}$
d. $A=A^{-1}$
5. If A and B are two square matrices of same order, and if there exist a non-singular matrix P, then similarity transformation holds the following relation
a. $B=A P$
b. $B=A P^{0-1}$
c. $B=P^{-1} A P$
d. $B=(P A)^{-1} P$
6. The two vectors X and Y in Real space are orthogonal if they follow the relation
a. $X . Y=0$
b. $X . Y=1$
c. $X . Y=\frac{1}{2}$
d. $X \cdot Y=\frac{\pi}{2}$
7. Laplace transformation of $e^{a x}$ is
a. $\frac{1}{a}$
b. $\frac{1}{a+t}$
c. $\frac{1}{s-a}$
d. $\frac{1}{s+a}$
8. Inverse Laplace transformation of $\frac{1}{s}$ is
a. 0
b. 1
c. ∞
d. $e^{-s t}$
9. The number of independent components of an antisymmetric tensor of rank 2 in n-dimensional space is
a. n^{2}
b. $\frac{n(n+1)}{2}$
c. $n+1$
d. $\frac{n(n-1)}{2}$
10. The contraction of a tensor $A_{m n}^{p}$ produces a
a. a scalar
b. a covariant tensor of rank 2
c. a vector
d. a mixed tensor of rank 2
11. The value of the identity $\delta_{i k} \varepsilon_{i n m}$ is
a. 3
b. 0
c. -1
d. +1
12. The condition of orthogonality of two tensors A^{μ} and B_{v} of rank 1 is given by
a. $g_{\mu v} A^{a} B^{v}=0$
b. $g_{\mu v} A^{\mu} B^{v}=1$
c. $g_{\mu v} A^{a} B^{v}=-1$
d. none of the above
13. If $g_{\mu \nu}=0$ for $\mu \neq v$ and μ, v, σ are unequal indices, then the value of $\Gamma_{\mu \mu}^{v}$ is
a. 0
b. $-\frac{1}{2 g_{v v}} \frac{\partial g_{\mu \mu}}{\partial x^{*}}$
c. $\frac{1}{2} \frac{\partial g_{\mu \mu}}{\partial x^{V}}$
d. $\frac{1}{2} \frac{\partial g_{\mu v}}{\partial x^{\mu^{2}}}$
14. Which of the following equations represents the Laplace's equation is
a. $\square^{2} \phi=0$
b. $\nabla^{2} \phi=\rho$
c. $\nabla^{2} \phi=0$
d. $\nabla^{2} \phi=k^{2} \phi$
15. If a function $f(x)$ is defined at $x=0$, then the value of the expression $\int_{-=0}^{+\infty} f(x) \delta(x) d x$ is (here, $\delta(x)$ is the Dirac-Delta function)
a. 1
b. $f(0)$
c. $-f^{\prime}(0)$
d. 0
16. Which of the following statement is not true for the Green's function $G(x, t)$
a. $G(x, t)$ is a continuous function of x
b. The first derivative of Green's function is a discontinuous function
c. Green's function is discontinuous at $x=t$
d. Green's function is a characteristics of the given boundary conditions
17. If $v(x, y)+i u(x, y)$ a complex function for a complex variable $z=x+i y$, then the Cauchy Riemann conditions are
a. $\frac{\partial u}{\partial v}=\frac{\partial v}{\partial u}$
b. $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$
c. $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$
d. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$
18. According to Cauchy's integral theorem
a. $f(z)=1 / 2 \pi i\left[\oint \frac{f(z)}{z-a} d z\right]$
b. $\oint f(z) d z=0$
c. $\oint f(z) d z=1$,
d. $\oint f(z) d z=a$
19. Example of a complex function is
a. $z=x+i y$,
b. $\mathrm{z}=\mathrm{x}+\mathrm{y}$,
20. Example of a complex variable
a. $z=x+i y$
b. $\mathrm{z}=\mathrm{x}+\mathrm{y}$,
c. $U(x, y)+i V(x, y)$,
d. $\mathrm{U}(\mathrm{x}, \mathrm{y})+\mathrm{V}(\mathrm{x}, \mathrm{y})$,

UNIVERSITY OF SCIENCE \& TECHNOLOGY, MEGHALAYA
[PART (A) : OBJECTIVE]
Duration : $\mathbf{2 0}$ Minutes

Course : \qquad

Semester : \qquad Roll No : \qquad

Enrollment No : \qquad Course code : \qquad

Course Title :

\qquad

Session \qquad 2017-18 \qquad Date: \qquad

Instructions / Guidelines

$>$ The paper contains twenty (20) / ten (10) questions.
$>$ Students shall tick (\checkmark) the correct answer.
> No marks shall be given for overwrite / erasing.
> Students have to submit the Objective Part (Part-A) to the invigilator just after completion of the allotted time from the starting of examination.

| Full Marks | |
| :---: | :---: | :---: |
| 20 | Marks Obtained |

