REV-01 BSC/02/05

C.

 $\epsilon_0 \rho$

B.SC. PHYSICS SECOND SEMESTER ELECTRICITY & MAGNETISM BSP – 921 IDMJ

[USE OMR FOR OBJECTIVE PART]

SET A

2024/06

Full Marks: 35 Duration: 1:30 hrs. (Objective) Marks: 10 Time: 15mins. $Choose \ the \ correct \ answer from \ the \ following:$ $1 \times 10 = 10$ 1. The electric field for a point charge goes as (in spherical polar coordinates) $1/r^{2}$ b. 1/1 1/1.4 1/1.3 c. 2. Physically, the electric field is b. force per unit length a. force per unit charge d. force per unit area c. force per unit current 3. Choose the correct statement. a. $\frac{ \text{Field lines begin from positive} }{ \text{charges}. }$ b. Field lines begin from negative charges. c. Field lines can terminate in midair. d. Field lines can cross each other. 4. If σ is the charge per unit surface, then over an area A, the total charge would be a. σ/A C. 5. The flux of an electric field \vec{E} through a surface S is $\int \vec{E} \times d\vec{a}$ d. None of these c. The curl of an electrostatic field is ρ/ϵ_0 b. p d.

d.

0

7. Magnetic force in a charge Q, moving with velocity \vec{v} in a magnetic field \vec{B} , is the Lorentz force, and it is expressed as

 $\vec{F}_{mag} = Q(\vec{v} \times \vec{B})$ $\vec{F}_{mag} = Q\vec{v}$ a. c.

 $\vec{F}_{mag} = (\vec{v} \times \vec{B})$ $\vec{F}_{mag} = Q\vec{B}$

 $\nabla \cdot \vec{E} = ?$ 8. ρ/ϵ_0 b. a. ϵ_0 ρ $\rho\epsilon_0$

9. \vec{E} and V are the electric field and potential respectively. The relation between them

 $\vec{E} = -\nabla V$ c. $\nabla \cdot \nabla \times \vec{E} = V$ b.
d. None of these $\nabla \cdot \vec{E} = V$

10. Poisson's equation reads as

a. c.

b. $\nabla^2 V = \rho/\epsilon_0$ **d.** None of these $\nabla^2 V = 0$ $\nabla^2 V = -\rho/\epsilon_0$

(<u>Descriptive</u>)

Time: 1 hr. 15 min. Marks: 25

[Answer question no.1 & any two (2) from the rest]

1. Draw the field lines for

1.25×4=5

- a. a charge q
- b. a charge 2q
- c. two equal charges separated by some distance.
- **d.** two equal and opposite charges separated by some distance.
- 2. a. Find the electric field (magnitude and direction) a distance z above the midpoint between two equal charges, q, a distance d apart. 5+5=10
 - b. Find the electric field (magnitude and direction) a distance z above the midpoint between two equal but opposite charges, q, -q, a distance d apart.
- 3. a. A long cylinder carries a charge density that is proportional to the distance from the axis: $\rho = ks$, for some constant k. Find the electric field inside this cylinder.
 - **b.** Suppose the electric field in some region is found to be $\vec{E} = kr^3\hat{r}$, in spherical coordinates (k is some constant).
 - (a) Find the charge density ρ .
 - (b) Find the total charge contained in a sphere of radius *R*, centered at the origin.

Hint:
$$\left[\nabla \cdot \mathbf{V} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}\right]$$

4. **a.** Three charges are situated at the corners of a square (side *a*), as shown in the given figure. How much work does it take to bring in another charge, +*q*, from far away and place it in the fourth corner?

5+5=10

b. How much work does it take to assemble the whole configuration of four charges?

5. **a.** Two infinite parallel planes carry equal but opposite uniform charge densities $\pm \sigma$, as shown in the given figure. Find the electric field in each of the three regions: (i) to the left of both, (ii) between them, (iii) to the right of both.

b. Find the electric field outside a uniform charged solid sphere of radius R and total charge q.

== *** ==

6+4=10