REV-01 BSP/01/05

B.Sc. PHYSICS FIFTH SEMESTER CLASSICAL DYNAMICS **BSP-503A [SPECIAL REPEAT]** [USE OMR FOR OBJECTIVE PART]

2024/07 SET A

Duration: 3 hrs.

Full Marks: 70

(Objective)

Time: 30 min.

Marks: 20

Choose the correct answer from the following:

1X20=20

1. How many independent variables are there in the Hamiltonian $H=H(q_k,p_k,t)$, where k=1,2,....n?

2. For a parabolic path of planets, the eccentricity parameter ϵ will

3. The Lagariangian of a system is $L = m \dot{q}^2$, its Hamiltonian will be

The Lagariangian of a system is
$$L = m q^2$$
, its Hamiltonia. $\frac{p^2}{2m}$ c. $\frac{p^2}{4m}$ d. $\frac{p^2}{m}$

4. In a conservative system, the Lagrangian equations of motions will be

a.
$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_k} \right) = \frac{\partial T}{\partial \dot{q}_k}$$
b. $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) = \frac{\partial L}{\partial \dot{q}_k}$
c. $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_k} \right) = \frac{\partial L}{\partial \dot{q}_k}$
d. $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) = \frac{\partial L}{\partial \dot{q}_k}$

5. A particle moves in a plane. It's kinetic energy will be

a.
$$T = \frac{1}{2}m (\dot{r}^2 + r \dot{\theta}^2)$$

b. $T = \frac{1}{2}m (\dot{r}^2 + r^2 \dot{\theta})$
c. $T = \frac{1}{2}m (\dot{r}^2 + r^2 \dot{\theta}^2)$
d. $T = \frac{1}{2}m (\dot{r}^2 + \dot{\theta}^2)$

6. A central force acting on a particle is given by $F \propto -1/r^2$, potential of the system will be

a.
$$V \propto -\frac{1}{r}$$

b. $V \propto \frac{1}{r}$
c. $V \propto -r$
d. $V \propto r$

7. The potential energy of a system is given by V = mgz, then the force acting on the particle will be

a.
$$\vec{F} = mg\hat{z}$$
 b. $\vec{F} = -mg\hat{z}$ c. $\vec{F} = mg\vec{z}$ d. $\vec{F} = -mg\vec{z}$

8. Which one of the following is correct for the Hamiltonian equations of motion

a.
$$\dot{p}_k = -\frac{\partial H}{\partial q_k}$$
b. $\dot{q}_k = -\frac{\partial H}{\partial p_k}$
c. $q_k = \frac{\partial H}{\partial p_k}$
d. $\dot{q}_k = \frac{\partial H}{\partial p_k}$

- 9. Consider two frames S_1 and S_2 , where the later one is moving with a relativistic velocity v along a particular direction. Statements: (i) two events are simultaneous in S_1 frame, then (ii) these two events are not simultaneous in S_2 frame
 - a. Both statements are true

b. Statements (i) is true & (ii) is false

- c. Statements (i) is false & (ii) is true
- d. Both statements are false
- 10. A 500m long train moving with a speed 0.8c, its moving length will be
 - a. 200m

b. 250m

c. 300m

d. 500m

11. The reduced mass of positronium atom will be

a. $\frac{m_e}{2}$

b. 3 me

c. me

d. 2me

12. Two photons approaching each other. Their relative velocity will be

a. c/2

c. 2c

d. c/3

13. The interval between two events will be light-like in Minkowski space-time provided

a. $ds^2 > 0$

b. $ds^2 < 0$

c. $ds^2 = 0$

d. $ds^2 \leq 0$

14. A moving clock appears

a. slow

b. fast

c. Remain same

d. Sometimes fast and sometimes slow

15. The aerial velocity is defined by

a. $r^2\dot{\theta}$

b. $\frac{1}{2}r^2\dot{\theta}$ d. $r^2\dot{\theta^2}$

c. $\frac{1}{2}r^2\dot{\theta}^2$

16. The Hamiltonian of a system will defined by

a. $H = \sum p_k q_k + L(q_k, q_k, t)$ c. $H = L(q_k, q_k, t) - \sum p_k q_k$

b. $H = -\sum p_{k}\dot{q_{k}} - L(q_{k}, q_{k}, t)$

d. $H = \sum p_k q_k - L(q_k, q_k, t)$

17. The relativistic energy-momentum relation will be

a. $E = \pm \sqrt{p^2 c + m^2 c^4}$ c. $E = \pm \sqrt{p^2 c^4 + m c^2}$ b. $E = \pm \sqrt{p^2c^4 + m^2c^2}$ d. $E = \pm \sqrt{p^2c^2 + m^2c^4}$

18. The total energy of a two-body problem will be a. $\frac{1}{2}\mu r^2 + \frac{1}{2}\frac{J}{\mu r^2} + V$ b.

c. $\frac{1}{2}\mu r^2 + \frac{j^2}{\mu r^2} + V$

b. $\frac{1}{2}\mu r^2 + \frac{1}{2}\frac{f^2}{\mu r^4} + V$ d. $\frac{1}{2}\mu r^2 + \frac{1}{2}\frac{f^2}{\mu r^2} + V$

19. The angular momentum of two-body problem will be a. $\hat{\theta} = \frac{I}{\mu r^2}$ b. $J = \frac{\hat{\theta}}{\mu r^2}$

c. $J = \mu r^2 \dot{\theta}^2$

d. $\dot{\theta} = \mu r^2 / J$

20. The total energy of planets revolving around the sun in a circular paths will be

$$E = -\frac{\mu k^2}{r^2}$$

$$E = -\frac{\mu k^2}{2k^2}$$

a.
$$E = -\frac{\mu k^2}{J^2}$$

c. $E = -\frac{\mu J^2}{k^2}$

d.
$$E = -\frac{\mu J^2}{2 k^2}$$

Descriptive

Time: 2 hrs. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

- 8+2=10 1. a. Show that path of planets under a central force motion is conic section.
 - b. State the conditions of parabolic and circular paths of the
- 2+6+2 2. a. A particles moves in plane under a central potential $V = -\frac{k}{r}$. Find the Lagrangian of the system.
 - b. Obtain the Lagrange's equations of motions.
 - c. Find the Hamiltonian of the system.
- 3+5+2 3. a. Construct the Lagrangian of a simple pendulum. =10
 - b. Find the Lagrange's equations of motions of a simple pendulum.
 - c. For a small oscillation of a simple pendulum, find its time period.
- 4+3+3 4. a. State Kepler's laws of planetary motions. =10 b. Prove the laws of period of Kepler's law.
 - If the earth suddenly shrinks to its radius by 25%, calculate the new time period.

5.	a.	Derive the components of acceleration of a particle moves in a plane.	5+2+3 =10
	b.	Show that the angular momentum in a two-body system is conserved.	
	c.	Find an expression of effective potential energy of this two- body system.	
6.	a.	Define Hamiltonian of a system.	2+4+4
	b.	Show that the Hamiltonian of a system is $H=\sum p_k q_k - L$.	=10
	c.	Derive the Hamiltonian equations of motions.	
7.	a.	Using Lorentz transformation relations derive the velocity addition theorem.	4+2+4 =10
	b.	Show that the speed of light in vacuum is the upper limit of speed of any object.	
	c.	If the time interval measured by a moving observer is 3 hrs when moving with a relativistic velocity 0.8c, find its proper time.	
8.	a.	Using Lorentz transformation relations show that $ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$ is invariant.	4+3+3 =10
	b.	The total energy of a relativistic particle is 2 times its rest mass energy. What will be its speed?	
	c.	Derive an expression of time dilation in special relativity theory.	

4