REV-01 BSP/02/05

B.SC. PHYSICS SECOND SEMESTER WAVES & OPTICS BSP – 202 OLD COURSE [REPEAT] [USE OMR FOR OBJECTIVE PART]

2024/06 SET A

Duration: 3 hrs.

(Objective)

Time: 30 min.

Marks: 20

Full Marks: 70

C	following: $1 \times 20 = 20$		
1.	what is propagated in a wave motion? a. Energy c. Both energy and momentum Resonance occurs at which type of vibration a. Undamped vibration	d. ?	Momentum None Damped vibration
	c. Forced vibration		None
3.	The resultant of two SHM's of equal time powill be circular when the phase difference is a. $\frac{\pi}{4}$ c. $\frac{\pi}{6}$		ds ,amplitudes, acting at right angles $\frac{\pi}{2}$ π
4.	In which type of diffraction lenses are used:a. Fresnel diffractionc. Both Fresnel and Fraunhofer diffractions	b.	Fraunhofer diffraction None
5.	An example if transverse wave is a. Sound wave c. Both sound and light waves		Light wave None
6.	The areas of Fresnels half period zones are a. Increases gradually c. Remains equal		Decreases gradually None.
7.	The velocity of sound in a medium depends a. Only pressure c. Only Density	b.	Only temperature All
8.	The frequency of oscillation in case of damp a. Greater than undameped oscillation c. Equal to the Undamped oscillation	b.	oscillation Lesser than undamped oscillation None
9.	In which type of oscillations the amplitude a. Forced oscillations c. Damped oscillations	ь.	wing is constant? Free oscillations None

10.	The average kinetic energy per un ρ is the density and n is the frequency	ncy)			
	a. $E = \pi^2 \rho n^2 a^2$ c. $E = 3\pi^2 \rho n^2 a^2$	b. <i>E</i> =	: 2π²ρη²α² None		
11.	Which principle states that travell	ng between two points will to	ollow route with		
	smallest optical path length? a. Newton's principle	b. Fermat's princip	ple		
	c. Mate's principle	d. Gauss' principle			
12.	Which of the following expression	correctly represents optical	separation, Δ ?		
	a. d-(f1+f2)	b. f1-(d+f2)	se paration, se		
	c. (2-(d+f1)	d. d+f1+f2			
13.	The modification of distribution of light energy due to superposition is called				
	a. Refraction	b. Polarization			
	c. Interference	d. Diffraction			
14.	What is the maximum intensity of superposition when two light waves have same				
	amplitude, a?				
	a. a2	b. 2a2			
	c. 3a2	d. 4a2			
15.	On reflection from a denser medium, the path difference introduced is,				
	a. 2λ c. λ/2	b. λ			
		d. λ/4			
16.	For interference in thin films, what is the path difference between two reflected ray				
	a. $2\mu t \cos r$	b. $2\mu t \sin r$			
	$c. 2\mu t \tan r$	d. $2\mu\sin r$			
17.	What is the nature of fringes produced in Michelson's interferometer?				
	a. elliptical	b. circular			
	c. square	d. rectangular			
18.	What are the wavelengths of two components of D-lines of sodium?				
	a. 5690 A, 5696 A	b. 5790 A, 5796 A			
	c. 5890 A, 5896 A	d. 5990 A, 5996 A			
19.	What is the angle of polarization for glass?				
	a. 53.50	b. 54.50			
	c. 56.50	d. 57.50			
20.	What is the relation between refractive index μ and angle of polarization i?				
	a. $\mu = \tan i$	b. $i = \tan \mu$			
	c. $\mu = \sin i$	d. $i = \sin \mu$			
	1	7			

Descriptive

Time: 2 hrs. 30 min. Marks: 50

[Answer question no.1 & any four (4) from the rest]

- Find the resultant of two simple harmonic motions of equal time
 periods when they act at right angles to each other. Discuss different
 important cases analytically.
- 2. a. Find the frequency of undamped free vibrations. 5+5=10
 - **b.** Considering closed end organ pipe show that the frequencies are in ratio 1:3:5:......
- 3. a. Derive the relation $\frac{d^2y}{dt^2} = v^2 \frac{d^2y}{dx^2}$
 - b. A simple harmonic is represented by the equation $y = 10 \sin \left(10t \frac{\pi}{6}\right)$ where y is in metres, t is in seconds and phase angle is in radians Calculate (i) the frequency (ii) the maximum displacements (iii) the time period.
- 4. **a.** What do you mean by zone plate? Show that the radii of half period zones are in the ratio $\sqrt{1}:\sqrt{2}:\sqrt{3}:\sqrt{4}....etc$.
 - b. Differentiate Fresnel and Fraunhofer types of diffraction.
- 5. a. Use Fermat's principle to establish the law of reflection. 5+5=10
 - b. Discuss spherical aberration with a proper diagram.
- 6. a. Describe achromatism and find the condition for achromatism for two thin lenses in contact. 6+4=10
 - b. Discuss various forms of distortion.

- a. Describe the experimental arrangement to produce Newton's rings. 5+5=10
 b. In Newton's ring experiment, the radii of 10th and 20th rings are 0.2 and 0.3 cm respectively and the focal length of the plano- convex lens is 90 cm. Calculate the wavelength of light used.
- a. Derive Brewster's law. Discuss double refraction with a figure.
 b. How will you obtain elliptically and circularly polarized light?

= = *** = =