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FIGURE 1.3 Linked list.

1.8.3 Stack

A stack is a list with the restriction that insertions and deletions can be performed at one
end of the list. The fundamental operations on a stack are PUSH and POP. PUSH inserts an
element at the designated end and POP deletes an element from the same end. Applying POP
on an empty stack and applying PUSH to a full stack (implementation dependent) leads to
an error situation. Stack is also called LIFO (last in first out list). A stack can be implemented
using a linked list or an array. Figure 1.4 shows the effect of push and pop operations on

a stack.
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FIGURE 1.4 Stack.

1.8.4 Quevue

Like stacks, queues are lists but have insertion done at one end and deletion at the other end.
Queues follow the ‘first in first out' (FIFO) discipline. The basic operations on a queue are
‘enque’ which inserts an element at the end of the list (the rear end) and 'dequeue’ which
deletes the element at the start of the list (the front of the queue). Figure 1.5(a) schematically
shows a queue.

After insertion of element A, the queue becomes as shown in Figure 1.5(b) and after
deletion of element E, it becomes as shown in Figure 1.5(c).

Queues may also be implemented using arrays. Dequeing from an empty queue leads
to error. So also, enqueing in a full queue (implementation limitation) leads to implementation

CIror.
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FIGURE 1.5(a) A queue.
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FIGURE 1.5(b) Insertion of an element.
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FIGURE 1.5(c) Deletion of an element.

1.8.5 Set

A set is a collection of non-repetitive elements where each element of a set is either a set
or atomic. The atoms are usually integers, characters, strings, etc. and all elements in a set
are usually of the same type. The most common operations on sets are union, intersection,
difference. membership checking, insertion of a new element, deletion of an element, finding
the extremal element, checking for equality of two sets, =tc.

Sets can be implemented using linked lists. bit vectors, various kinds of trees. such as
binary search trees, tries and balanced trees. We show how to represent disjoint sets by using
trees. Suppose, we have two sets §) = (1, 3, 5, 9} and S, = (6. 7. 8). Each set has a
representative that is a member of the set. For example, in Figure 1.6(a). 1 is a representative
of §; and 6 is a representative of S,.

Two important operations on sets are FIND and UNION. FIND(8) will give us 6 (the
representative). The UNION of S, and S, will give us a set as represented in Figure 1.6(b).

A simple way to implement a disjoint-set structure is to represent each set by a linked
list. The first object in each linked list serves as the set's representative. Each object in the
linked list contains a set member, a pointer to the node containing the next member of the
set, and a pointer back to the representative. We have two other pointers: one to the head
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FIGURE 1.6(a) Disjoint sets.

FIGURE 1.6(b) Set union.
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FIGURE 1.6(c) Set represented as a linked list.

of the list (first object) another to the tail (last object) of the list. Thus, the linked list
representation for S, where S = {a, b, ¢, d} will be as shown in Figure 1.6(c).

An alternative to the list representation is the bit-vector representation of sets. Let us
assume that the universal set has n linearly ordered members. A subset S is represented as
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a vector of n bits, where the i bit is 1 if the i"™ element of the universal set is a member
of S. The bit-vector representation has the advantage that one can determine whether the i
element of the universal set is a member of a set in time independent of the size of the set.
The basic operations on sets such as union and intersection can be carried out through the
bit operations OR, AND.

A set can also be represented by an array A such that A(i) = 1 if and only if the {®
member of the universal set is in S. With an array representation, it is easy to determine
whether an element is a member of a set. The disadvantage is that union and intersection
require time proportional to n rather than the sizes of the sets involved. The space required
to store S is proportional to n.

1.8.6 Graph

A graph G = (V, E) is a set of vertices V and a set of edges E, where E < V x V. A graph
may be represented in two ways: (i) adjacency list (ii) adjacency matrix. Two vertices are
adjacent if there is an edge between them. In the case of adjacency list, we maintain, as
many lists as there are vertices in the graph. For each vertex of the graph. we maintain a
list containing the vertices that are adjacent to the vertex.

For the graph in Figure 1.7(a), the adjacency lists are shown in Figure 1.7(b).

The alternative representation uses a matrix. The (i, /)" element of the matrix is 1 if
there is an edge from vertex i to vertex j, and is 0 otherwise. For the graph in Figure 1.7(a),
the adjacency matrix is shown in Figure 1.7(c).

For the undirected graph, the adjacency matrix is symmetric.

1.8.7 Tree

A tree is a connected graph without cycle. There are many alternative definitions of a tree.
For example, a tree may be defined as a graph where there is exactly one path between
any pair of vertices. We are more interested in rooted binary trees. A rooted binary tree has
a distinguished vertex called the root (A in Figure 1.8(b)) of the tree and if the tree is also
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FIGURE 1.7(a) A sample graph.



