BASICS OF ALGORITHM 11

Here Time = (K1 + n * K2) o< n,

where K1 and K2 are two constants, K1 is the time taken for the assignment T = 0, and
K2 is the time taken for the assignment T = T + A(i, i). Thus, the algorithm takes linear

time.
EXAMPLE 1.4: Maximum element of a matrix (square matrix).

Procedure Maxelement (A,n)
Array A(n)
Max = —-eco /* initialization */
For 1 = 1 to n Step 1 Do
For j = 1 to n Step 1 Do
If(A(i,J) > Max) Then Max = A(i,j);
Endfor /* j */
Endfor /* 1 =/
End Maxelement

Here, the time required is of the form (k, + k; * n * n) o< n®, where k; and k, are
constants; k, is the time for the assignment Max = —eo and k, is the time taken by the
operations inside the loop. Thus, the algorithm takes quadratic time.

EXAMPLE 1.5: Product of two matrices A and B.

Procedure Matmul (A, B, n)
Array A(n), B(n), C(n)
For i = 1 to n Step 1
For j = 1 to n Step 1
C{i;j) = 0; /* initialization #*/
For k = 1 to n in Step 1
/C(i,j) = C(1i,7) + A(i,k) * B(k,J);
Endfor /* k #*/
Endfor /% j #*/
Endfor /* 1 %/
End Matmul

Here the time required is of the form:
{(ky # n + k2) * n} * n, where k, and ky are constants. This expression is proportional
to n'. Thus, the algorithm takes cubic time.

1.1 UPPER BOUND OF POLYNOMIAL FORM OF TIME COMPLEXITY

Let x be the size of data (according to the problem) and let the algorithm take time of the
form:

T=AX"+A,_ X" + ..+ A

12 DESIGN METHODS AND ANALYSIS OF ALGORITHMS

= T <A X +]A,] ¥ + A, ¥ + Al

AL A._
=(Mn|+' "'I+l 221+...+—M2|)x"
X X X

S (ALl + Ml + 1Al + o+ [ADX" (0 x 2 1)
= Kx", K = (IAIII + IA"—lI + IAn—'.’I +o.+ IAOD

That is, Kx" bounds the time from the above. We say that the time requirement is of the order
of x". For this, we use the ‘Big Oh’ notation and write T € O(x").

Big O: fin) is said to be O(g(n)) iff there exist two constants ¢ and n, such that f{n)
< c*gln), ¥V n 2 n,
Let fin) = 4n® + 3n, gln) = 2,

gn) > fin), Y n 23 = fin) ~ O(g(n)) = fin) ~ 0(113).

Algorithms taking constant time are said to be of O(1). The order of dominance of
some common time complexities is:

O(1) < O(log n) < O(n) < O(n log n) < O(n*) < O(n*) < OK"), k is a constant.

Table 1.1 shows how a few of the common functions grow with the increase in argument
values. We note that the growth rates of 75 and 76 are very very fast compared to the others.
After some small values of N, these two functions become unmanageably large.

TABLE 1.1 Growth of functions

N Tl=N T2=NlogN T3 = N? T4 = N° TS =2 76 = N!

1 1 0 1 1 2 1

10 10 33.21928095 100 1000 1024 3628800
20 20 86.4385619 400 8000 1048576 2.4329E+18
30 30 147.2067179 900 27000 1073741824 2.65253E+32
40 40 212.8771238 1600 64000 1.09951E+12 8.15915E+47
50 50 282.1928095 2500 125000 1.1259E+15 3.04141E+64
60 60 354.4134357 3600 216000 1.15292E+18 8.32099E+81
70 70 429.0498112 4900 343000 1.18059E+21 1.1979E+100
80 80 505.7542476 6400 512000 1.20893E+24 7.1569E+118
90 90 584.2667787 8100 729000 1.23794E+27 1.4857E+138
100 100 664.385619 10000 1000000 1.26765E+30 9.3326E+157
110 110 745.9495685 12100 1331000 1.29807E+33 1.5882E+178
120 120 828.8268715 14400 1728000 1.32923E+36 6.6895E+198
130 130 912.9078157 16900 2197000 1.36113E+39 6.4669E+219
140 140 998.0996224 19600 2744000 1.3938E+42 1.3462E+241
150 150 1084.322804 22500 3375000 1.42725E+45 5.7134E+262

BASICS OF ALGORITHM 13

Problems whose best known algorithms require exponential (") time or more, where & is a
constant, is also known as hard or intractable problems.
There are other asymptotic notations like Big Oh. Some of these are:

Q-notation: It deals with the minimum time (best cases) required by the algorithm.
fin) is said to be Q(g(n)) iff there exist positive constants ¢ and n,, such that |in)| 2 ¢ * |g(n)].
Yn2zn,

Q gives the lower bound while O gives the upper bound of. time required by the
algorithm. We say an algorithm to be optimal if fin) is O(g(n)) as well as fin) is Q (g(n)).

O-notation: fin) is O(g(n)) iff there exist positive constants ¢, ca and n, such that
cile()] € Ifin)] € calg(m)]. ¥V n 2 n,. ©(g(n)) deals with the optimum time.

o-notation (small o): fin) is o(g(n)) iff:

fo
g(n)

Limit

n=»w
Now we consider some more examples for evaluating time complexities.
EXAMPLE 1.6: Suppose we have a programme having outline as given below. Let one

time execution of the statements between the i-loop and the j-loop require K, units of time
and those within the j-loop require K, units of time.

Do 10 i = 1 to N p X
ks
L\
K ‘ N\
s ./‘ -
Do 10 j = 1 to i LN i W‘E
’ \

K, ” L\L
10"'Continue
The time-complexity of the above algorithm may be expressed as:
TIN) =K * N+ Ky *1 + K22+ Ky *3+..+K,*N
KN+ Ky(1 +2+3+...+N)
K\N + K,N(N + 1)/2
So, T(N) is O(N).

]

EXAMPLE 1.7: Suppose we have a programme having outline as given below. Let one
time execution of the statements between the i-loop and the j-loop require K units of time
and those within the j- and /-loops require K, units of time.

14 DESIGN METHODS AND ANALYSIS OF ALGORITHMS

Do 10 1 = 1 to N
K,
Do 10 j = 1 to i

Do 10 1 = 1 to 1
K,
10 Continue
The time complexity for the above algorithm may be written as:
T(N) = K;N + Ky17 + K222 + .+ KoN?
= KN + Ky(1° + 22 + .. + N?)

NIN+1)@2N+1)
6

= K|N + K:
So, T(N) is O(N?).
EXAMPLE 1.8: Suppose we have a programme having the outline given below. Let one

time execution of the statements between the i- and j-loops require K, units of time and
those within the j-, I- and m-loops require K, units of time.

Do 10 1 = 1 to N
K,

Do 10 j = 1 to i

Do 10 1 = 1 to 1

Do 10 m = 1 to 1
K,

10 Continue
The time complexity of the above algorithm may be written as:

TIN) = K\N + Kx(13+ 22433+ .+ N3
= KN + Kﬂ(___’v(N % ”)2
. 2

So, T(NY is O(N*).

Some of the useful relations involving O-notation that help in finding time complexities
are:

* fin) ~ O(fin)), that is, fin) is dominated by its own time.

* C* O(fn)) = O(fin)). that is, constants are absorbed in O-notation.

