B.Sc. PHYSICS FIFTH SEMESTER CLASSICAL DYNAMICS BSP-503A

SET

Duration: 3 hrs.

Full Marks: 70

Time: 30 min.

(Objective)

Marks: 20

Choose the correct answer from the following:

1X20 = 20

1. How many independent variables are there in the Hamiltonian $H=H(q_k,p_k,t)$, where k=1.2,...n?

a. n c. 2 n b. n+1

d. 2 n+1

2. For a parabolic path of planets, the eccentricity parameter ϵ will

b. 1

c. >1

d. <1

3. The Lagariangian of a system is $L = m q^2$, its Hamiltonian will be

a. $\frac{p^2}{2m}$

4. In a conservative system, the Lagrangian equations of motions will be

a. $\frac{d}{dt} \left(\frac{\partial \Gamma}{\partial \dot{q}_k} \right) = \frac{\partial \Gamma}{\partial \dot{q}_k}$ c. $\frac{d}{dt} \left(\frac{\partial \Gamma}{\partial \dot{q}_k} \right) = \frac{\partial \Gamma}{\partial \dot{q}_{k_k}}$

- b. $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) = \frac{\partial L}{dq_k}$ d. $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) = \frac{\partial l}{dq_k}$
- 5. A particle moves in a plane. It's kinetic energy will be

a. $T = \frac{1}{2}m(\dot{r}^2 + r\dot{\theta}^2)$

b. $T = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta})$

c. $T = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2)$

d. $T = \frac{1}{2}m(\dot{r}^2 + \dot{\theta}^2)$

6. A central force acting on a particle is given by $F \propto -1/r^2$, potential of the system will be

a. $V \propto -\frac{1}{r}$

b. $V \propto \frac{1}{r}$

c. V x -1

7. The potential energy of a system is given by V = mgz, then the force acting on the particle will be

a. $\vec{F} = mg2$

b. $\vec{F} = -mg\hat{z}$

 $c. \vec{f} = m g \vec{z}$

d. $\vec{F} = -m g \vec{z}$

S. Which one of the following is correct for the Hamiltonian equations of motion

a. $\dot{p}_k = -\frac{\partial H}{\partial q_k}$ c. $q_k = \frac{\partial H}{\partial p_k}$

b. $\dot{q}_k = -\frac{\partial H}{\partial p_k}$ d. $\dot{q}_k = \frac{\partial H}{\partial \dot{p}_k}$

a. 200m	b. 250m d. 500m
The reduced mass of positronium atom will	
a. $\frac{m_e}{3}$	b. $\frac{3 m_e}{2}$
c. m_e	d. 2m _e
Two photons approaching each other. Their	
a. c/2	b. c
c. 2c	d. c/3
The interval between two events will be light	t-like in Minkowski space-time provided
$ds^2 > 0$	b. $ds^2 < 0$
$c. ds^2 = 0$	$d. ds^2 \leq 0$
A moving clock appears	
a. slow	b. fast
c. Remain same	d. Sometimes fast and sometimes slow
The aerial velocity is defined by	
a. $r^2\dot{\theta}$	b. $\frac{1}{2}r^2\dot{\theta}$
c. $\frac{1}{2}r^2\dot{\theta}^2$	d. $r^2\dot{\theta}^2$
The Hamiltonian of a system will defined by	
	b. $H = -\sum p_k q_k - L(q_k, q_k, t)$
c. $H = L(q_k, q_k, t) - \sum p_k q_k$	$d. H = \sum p_k q_k - L(q_k, q_k, t)$
The relativistic energy-momentum relation	will be
a. $E = \pm \sqrt{p^2 c + m^2 c^4}$	b. $E = \pm \sqrt{p^2 c^4 + m^2 c^2}$
c. $E = \pm \sqrt{p^2 c^4 + m c^2}$	d. $E = \pm \sqrt{p^2 c^2 + m^2 c^4}$
The total energy of a two-body problem will	be
a. $\frac{1}{2}\mu r^2 + \frac{1}{2}\frac{I}{\mu r^2} + V$	b. $\frac{1}{2}\mu r^2 + \frac{1}{2}\frac{J^2}{\mu r^4} + V$
	$\frac{d}{2} \frac{1}{\mu} r^2 + \frac{1}{2} \frac{J^2}{\mu r^2} + V$
$\frac{1}{2}\mu r^2 + \frac{1}{\mu r^2} + V$	$\frac{1}{2}\mu r^2 + \frac{1}{2}\frac{1}{\mu r^2} + V$
The angular momentum of two-body proble	
a. $\dot{\theta} = \frac{1}{\mu r^2}$	b. $\int zz \frac{\theta}{\mu r^2}$
	$\mathbf{d}.\ \dot{\theta} = \mu r^2 / J$
$= j - \mu i \cdot \sigma$	
2	USIM/COE/
	The reduced mass of positronium atom will a. $\frac{m_e}{2}$ c. m_e Two photons approaching each other. Their a. $c/2$ c. $2c$ The interval between two events will be light $a \cdot ds^2 > 0$ c. $ds^2 = 0$ A moving clock appears a. slow c. Remain same The aerial velocity is defined by a. $r^2\dot{\theta}$ c. $\frac{1}{2}r^2\dot{\theta}^2$ The Hamiltonian of a system will defined by a. $H = \sum p_k\dot{q}_k + L(q_k,q_k,t)$ c. $H = L(q_k,q_k,t) - \sum p_k\dot{q}_k$ The relativistic energy-momentum relation a. $E = \pm \sqrt{p^2c + m^2c^4}$ c. $E = \pm \sqrt{p^2c^4 + m c^2}$ The total energy of a two-body problem will a. $\frac{1}{2}\mu r^2 + \frac{1}{2}\frac{J}{\mu r^2} + V$ C. $\frac{1}{2}\mu r^2 + \frac{1}{2}\frac{J}{\mu r^2} + V$ The angular momentum of two-body proble a. $\dot{\theta} = \frac{J}{\mu r^2}$ c. $J = \mu r^2 \dot{\theta}^2$

9. Consider two frames S_1 and S_2 , where the later one is moving with a relativistic velocity v along a particular direction. Statements: (i) two events are simultaneous in S_1 frame,

b. Statements (i) is true & (ii) is false

USIM/COE/R-C

d. Both statements are false

then (ii) these two events are not simultaneous in S_2 frame

10. A 500m long train moving with a speed 0.8c, its moving length will be

a. Both statements are true c. Statements (i) is false & (ii) is true

The total energy of planets revolving around the sun in a circular paths will be

a.
$$E = -\frac{\mu k^2}{t^2}$$

$$E = -\frac{\mu k^2}{2 I^2}$$

$$E = -\frac{\mu J^2}{k^2}$$

d.
$$E = -\frac{\mu J^2}{2 k^2}$$

Descriptive

Time: 2 hrs. 30 mins.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

- a. Show that path of planets under a central force motion is conic section.
 b. State the conditions of parabolic and circular paths of the planets.
 a. A particles moves in plane under a central potential V = -k/r. Find the Lagrangian of the system.
 b. Obtain the Lagrange's equations of motions.
 c. Find the Hamiltonian of the system.
 a. Construct the Lagrangian of a simple pendulum.
 3+5+2=10
 - a. Construct the Lagrangian of a simple pendulum.
 b. Find the Lagrange's equations of motions of a simple pendulum.
 c. For a small oscillation of a simple pendulum, find its time
 - period.
 a. State Kepler's laws of planetary motions.
 b. Prove the laws of period of Kepler's law.
 c. If the earth suddenly shrinks to its radius by 25%, calculate the new time period.

 in a plane. b. Show that the angular momentum in a two-body system is conserved. c. Find an expression of effective potential energy of this two-body system. 6. a. Define Hamiltonian of a system. 	5÷2+3 =10
body system.	
6. a. Define Hamiltonian of a system.	
	2+4+4
b. Show that the Hamiltonian of a system is $H=\sum p_k q_k - L$.	=10
c. Derive the Hamiltonian equations of motions.	
7. a. Using Lorentz transformation relations derive the velocity addition theorem.	4+2+4 =10
b. Show that the speed of light in vacuum is the upper limit of speed of any object.	
c. If the time interval measured by a moving observer is 3 hrs when moving with a relativistic velocity 0.8c, find its proper time.	
8. a. Using Lorentz transformation relations show that $ds^2 = -c^2dt^2 + dx^2 + dy^2 + dz^2$ is invariant.	4+3+3 =10
b. The total energy of a relativistic particle is 2 times its rest mass energy. What will be its speed?	
 Derive an expression of time dilation in special relativity theory. 	

4