2023/12

B.Sc. PHYSICS FIRST SEMESTER

SET

INTRODUCTION TO MATHEMATICAL PHYSICS BSP - 101 IDMj [REPEAT] | USE OMR FOR OBJECTIVE PART|

Duration: 3 hrs.

Full Marks: 70

(Objective)

Time: 30 min.

Marks: 20

Choose the correct answer from the following: $1 \times 20 = 20$

1. If
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 and $|\vec{r}| = r$, then $\vec{div} \vec{r}$ is a. 2 b. 3 d. -2

2. For the right-handed system of three coplanar vectors $\vec{A} = \hat{i} - \hat{j} - 2\hat{k}$,

$$\vec{B} = 3\hat{i} + 5\hat{j} + 6\hat{k}, \vec{C} = -\hat{i} + 4\hat{j} + m\hat{k}$$
, the value of m must be equal to b. 8 c. 0 b. 8 d. 6.5

3. A vector points A vertically upward and point B towards north. The vector product A×B

- a. along west b. along east c. zero d. vertically downward
- 4. The cross product $D=E\times F$ of vectors E=(1,-2,3) and F=(4,5,-6) is a. (-3, 18, 13) b. (-5, -18, -13)
- c. (-3, 18, -13) d. (5, -18, 13) 5. The line integral fc F-dr represents
- a. The work done by the vector field F b. The circulation of F along C along the curve C c. The flux of F through C d. The divergence of F along C
- 6. If $\phi = yz$, then its gradient is b. 0 a. $z\hat{j} + y\hat{k}$ $\mathbf{d} \cdot \hat{i} + \hat{i} + \hat{k}$ c. $y\hat{j} + z\hat{k}$
- 7. The electric field due to a point charge Q is expressed $\overrightarrow{E} = \frac{Q\hat{r}}{4\pi\varepsilon_0 r^2}$, then the divergence of electric field due to that point charge is

a.
$$\frac{3Q}{4\pi\varepsilon_0 r^2}$$
 c. 0

b.
$$2Q \over 4\pi\varepsilon_0 r$$

- d. 3Q $4\pi\varepsilon_0 r$
- 8. The direction of $grad\phi$ is

a. Tangential to level surfaces

b. Normal to level surface

c. Inclined at 45° to level surface

d. Arbitrary

9. If
$$\vec{A} = x\hat{i}$$
 and $\vec{B} = y\hat{j}$ then $\nabla(\vec{A}.\vec{B})$ is equal to

a. $x\hat{i} + y\hat{i}$ b. 0

c.
$$\frac{1}{2}yx^2\hat{i} + \frac{1}{2}xy^2\hat{j}$$

d. 2

The flux leaving any closed surface per unit volume in a vector field
$$\hat{A}$$
 is called

grad A

c. curl A $flux \stackrel{\rightarrow}{A}$

(i)
$$2\hat{i} - 2j + 4\hat{k}$$
, (ii) $10\hat{i} + 8\hat{j} + 12\hat{k}$ and

(iii) $3\hat{i} + 11\hat{j} + 4\hat{k}$

And (ii)

b. (ii) d. None of these And (iii)

12. If for two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , $|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}-\overrightarrow{b}|$ then angle between \overrightarrow{a} and \overrightarrow{b} is

c. 0

13. If
$$\vec{F} = grad(2x^2 - 3y^2 + 4z^2)$$
, then $curl \vec{F}$ is

a. 4x - 6y + 8z

b. $4x\hat{i} - 6yj + 8z\hat{k}$ d. 3

2

14. Order of differential equation whose solution $y = ae^x + be^{2x} + ce^{3x}$ will be

 $\frac{1}{f(D)}x^m$

b. $F(D)x^m$

a.
$$[F(D)]^{-1}x^m$$

c.
$$mF(D)x^{m-1}$$

d. $mx^{m-1}[F(D)]^{-1}$

16. What is the wronskian determinant of x^2 , x^3

The value of α so e^{ay^2} that is an I.F. of the equation $(e^{\frac{-y^2}{2}} - xy)dy - dx = 0$

General solution of linear differential equation of first order $\frac{dx}{dy} + Px = Q$

a.
$$ye^{\int P.dx} = \int Qe^{\int P.dx} dx$$

b.
$$xe^{\int P \cdot dy} = \int Qe^{\int P \cdot dy} dy + C$$

$$c. \quad y = \int Q e^{\int P \, dx} \, dx + C$$

$$d. x = \int Q e^{\int P_{x} dy} dy + C$$

19. Particular integral of $y'' + 2y' - 3y = e^{2x}$ is

$$a. -\frac{1}{5}e^{2x}$$

20. When y = f(x) + c g(x) is the solution of an ordinary differential equation then

- a. f is called the particular integral (P.I.) and g is called the complementary function (C.F.)
- b. f is called the complementary function (C.F.) and g is called the particular integral (P.I.).
- c. f is called the complementary function (C.F.) and particular function (P.I.)
- d. g is called the complementary function (C.F.) and particular function (P.I.)

3

Descriptive

Time: 2 hrs. 30 mins.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

- 5+5=10 a. Show that the volume of the tetrahedron having $\overrightarrow{A} + \overrightarrow{B}$, $\overrightarrow{B} + \overrightarrow{C}$, C+A as concurrent edges is twice the volume of the tetrahedron having A, B, C as concurrent edges. b. If four points whose position vectors are a, b, c, d are coplanar, show that $[a \ b \ c] = [a \ d \ c] + [a \ d \ b] + [d \ b \ c]$
- 2. a. Prove that vector products can be expressed as a determinant. 4+4+2 b. Prove that [a+b, b+c, c+a] = 2[a,b,c]. =10 c. Prove that work done is a scalar product.
- 3. a. Find the value of λ , for the differential equation 3+4+3 $(xy^2 + \lambda x^2 y)dx + (x + y)x^2 dy = 0$ is exact.
 - b. Solve $\frac{d^2y}{dx^2} + 6y = \sin 4x$
 - c. $\frac{dx}{x} = tany dy$
- 4. a. If u = x + y + z, $v = x^2 + y^2 + z^2$, w = yz + zx + xy, prove that 5+5=10 grad u, grad v, grad w are coplanar vector.
 - **b.** Find the value of n for which the vector r'' r is solenoidal, where $r = x\hat{i} + y\hat{j} + z\hat{k}.$
- 5. a. A fluid motion is given by $\vec{v} = (y\sin z \sin x)\hat{i} + (x\sin z + 2yz)\hat{j} +$ 4+3+3 =10 $(xy\cos z + y^2)\hat{k}$. Is the motion irrotational?
 - **b.** If $y_1 = e^{-x}cosx$, $y_2 = e^{-x}sinx$ and $\frac{d^2y}{dx^2} + \frac{2dy}{dx} + 2y = 0$ then (a) Verify that y_1 and y_2 satisfy the given differential equation. (b) Apply Wronskian test to check that y_1 and y_2 are linearly

 - independent.

- 6. a. Evaluate curl (grad r^n), where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
- 5+5=10
- **b.** Find the constant a, b, c, so that $\vec{F} = (x + 2y + az)\hat{\imath} + (bx 3y z)\hat{\jmath} + (4x + cy + 2z)\hat{k}$ is irrotational.
- 7. **a.** If \vec{A} is a constant vector and $\vec{R} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, then prove that $curl[(\vec{A}, \vec{R})\vec{R}] = \vec{A} \times \vec{R}$
- 5+5=10
- **b.** If $\vec{F} = 2z\hat{\imath} x\hat{\jmath} + y\hat{k}$, then evaluate $\iiint \vec{F} dv$, where v is the closed region bounded by the planes $x = 0, y = 0, x = 2, y = 4, z = x^2$ and z = 2.
- 8. a. Solve $(D^2 + 5D + 4)y = 2 3x$

- 6+4=10
- **b.** Prove that for every vector field \vec{V} , $div(curl\vec{V}) = 0$.
 - == *** = =