REV-01 BCA/03/08

BACHELOR OF COMPUTER APPLICATION THIRD SEMESTER (REPEAT) OPERATING SYSTEMS

BCA-303
[USE OMR SHEET FOR OBJECTIVE PART]

Du	ration: 3 hrs.		Full Marks: 70
Tir	me: 30 mins.	tivo	Marks: 20
Ch	oose the correct answer from the follow	vin	g: 1×20=20
1.	Which algorithm is defined in Time quantu a. Shortest job scheduling algorithm c. Multilevel queue scheduling algorithm	b.	Priority scheduling algorithm Round robin scheduling algorithm
2.	Which of the following scheduling algorithma. FCFS c. Round-robin	b.	gives minimum average waiting time? SJF Priority
3.	Which one of the following is the deadlock a. Banker's algorithm c. Elevator algorithm	b.	idance algorithm? Round-robin algorithm Karn's algorithm
4.	For a deadlock to arise, which of the follow a. Mutual exclusion c. Hold and wait	b.	conditions must hold simultaneously? No preemption All of the mentioned
5.	The address generated by the CPU is referr a. Physical address c. Neither physical nor logical	b.	o as Logical address None of the mentioned
6.	The size of a process is limited to the size of a. External storage c. Physical memory	b.	Secondary storage None of the mentioned
7.	Swapping requires a		Keyboard Backing store
8.	The first fit, best fit and worst fit are strateg a. Process from a queue to put in memory	b.	Processor to run the next process
	c. Free hole from a set of available holes		

d. None of the mentioned

c. Is always used

10. External fragmentation exists when?
a. Enough total memory exists to satisfy a request but it is not contiguous
c. A request cannot be satisfied even when the total memory is free

b. The total memory is insufficient to satisfy a request

d. None of the mentioned

USTM/COE/R-01

2023/12

SET

1

11.	In Operating Systems, which of the followi a. Round Robin c. Priority	ng is/are CPU scheduling algorithms? b. Shortest Job First d. All of the mentioned
12.	What is the ready state of a process?a. When process is scheduled to run after some executionc. When process is using the CPU	b. When process is unable to run until some task has been completedd. None of the mentioned
13.	A set of processes is deadlock if a. Each process is blocked and will remain so forever c. All processes are trying to kill each other	b. Each process is terminatedd. None of the mentioned
14.	The number of processes completed per un a. Output c. Efficiency	uit time is known as b. Throughput d. Capacity
15.	Which of the following is not the state of a a. New c. Waiting	process? b. Old d. Running
16.	Which of the following do not belong to qua. Job Queue c. Device Queue	neues for processes? b. PCB queue d. Ready Queue
17.	 What is a long-term scheduler? a. It selects processes which have to be brought into the ready queue c. It selects processes which heave to remove from memory by swapping 	b. It selects processes which have to be executed next and allocates CPUd. None of the mentioned
18.	Suppose that a process is in "Blocked" state service is completed, it goes to the	
19.	The interval from the time of submission of termed as	b. Turnaround time d. Throughput
20	 In priority scheduling algorithm	b. CPU is allocated to the process with lowest priorityd. None of the mentioned
	2	USTM/COE/R-0

(Descriptive)

Time: 2 hr. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

1.	a) What are the necessary conditions for deadlock?b) What is the use of resource allocation graph in deadlock?Explain with examples.	4+6=10
2.	Explain five different types of operating system.	10
3.	a) What is File? What are the different file types?b) Explain different types of file access mechanisms.	5+5=10
4.	a) What is segmentation?b) What are program threats and system threats?	2+8=10
5.	a) Write a note on multi-level queue scheduling and multi-level feedback queue scheduling.b) Calculate the average waiting time and turnaround time using Round-Robin techniques having time quantum 3 for the following table:	4+6=10

Process	Burst Time (ms)		
PI	20		
P2	12		
P3	5		
P4	2		
P5	10		

6. a) Explain the Paging concept with the help of a diagram.		4+6=10
	b) Define First-Fit, Best-Fit and Wost-Fit allocation in memory.	

7. Consider the following reference string with page frame 3. Find the total number of page faults using LRU and Optimal Page Replacement algorithms.

5+5=10

701203042303212017013201701

8. a) Explain all the possible states of a process with diagram.

6+4=10

b) What is PCB?

3

== *** = =

USTM/COE/R-01