REV-01 MBA/127/132

MASTER OF BUSINESS ADMINISTRATION. FIRST SEMESTER QUANTITATIVE TECHNIQUES IN BUSINESS MBA-105

SET B

2023/12

[USE OMR SHEET FOR OBJECTIVE PART]

Time: 30 mins.

(Objective)

Full Marks: 70

Marks: 20

CI	noose the correct answer from the foll	oreing: 1×20=
1.	For an event A, if $P(A) = 34$, then $P(A^c) = \frac{1}{4}$ c. 12	b. $\frac{3}{4}$ d. $\frac{1}{3}$
2.	Let, the random variable X follows a binor then the standard deviation of X, isa. 2.45 c. 1.73	
3.	Which of the following statement is true for a. Mean < variance c. Mean ≠ variance	or a Poisson distribution? b. Mean > variance d. Mean = variance
4.	The mean and standard deviation of a stanta. 1 and 0 c. μ and σ	ndard normal variate Z are respectively b. 0 and 1 d. None of the above
5.	If a sample of large size n with known stapopulation, which of the following test state. Z	nndard deviation, is drawn from a normal distic is applied? b. χ² d. F
6.	The mean of the sampling distribution of a. the population variance c. the population proportion.	the sample means, is b. the population mean d. None of the above
7.	The corresponding statistic of population a. sample variance c. sample mean	variance, is b. sample standard deviation d. None of the above.
8.	Which of the following is Type II error? a. Reject H ₀ , when it is not true. c. Accept H ₀ , when it is true.	 b. Reject H0, when it is true. d. Accept H₀, when it is not true.

9.	The linear function that is maximized or r									
	a. Objective function	b. Inequality function								
	c. Equality function d. None of the above									
10.	In all the constraints of an LPP are satisfied.									
	a. Infeasible regionc. Either (a) or (b)	b. Feasible region								
		d. Neither (a) nor (b)								
11.	Which of the following distribution is true for symmetric distribution?									
	a. mean≠median≠mode c. mean < median < mode	b. mean > median > mode								
		d. mean = median = mode								
12.	The best relative measure of dispersion is									
	a. standard deviationc. coefficient of variation	b. variance								
		d. none of the above								
13.	In a certain distribution, mode = 24 , mean = 25.5 , the median is									
	a. 25 c. 26	b. 25.5								
		d. 26.5								
14.	are not effected by the extreme values.									
	a. mean and mode	b. median and mode								
	c. mean and median	d. none of the above								
15.	In a certain distribution, $CV = 25\%$, the me	ean is 60, the standard deviation is								
	a. 12.5 c. 15	b. 3.75								
		d. 5.25								
16.	Which of the following statement is true for squares method?	or the determination of trend by using least								
	a. Trend values can be determined for	b. Trend values cannot be determined for								
	each period	each period								
	c. It is free from subjective error	d. Both (a) and (c)								
17.	Paasche's index possesses	``								
	a. upward bias	b. downward bias								
	c. no bias	d. None of the above								
18.	If $r_{XY} = 0$, the variables X and Y are									
	a. linearly related	b. independent								
	c. not linearly related	d. not independent								
19.	The product of the two regression coefficients									
	a. <1	b. ≤1								
	c. >1	d. ≥1								
20										
20.	index number is an ideal index number. a. Laspeyre's b. Paasche's									
	c. Fisher's	b. Paasche's								
		d. None of the above								

$\left(\underline{\text{Descriptive}} \right)$

Time: 2 Hr. 30 Mins. Marks: 50									
[Answer question no.1 & any four (4) from the rest]									
1.	var Age	culate mean, median, iation of the following e in years (less than): 1 mber of persons	distributi		deviatio 6070 1520	80 2325	pefficient of	10	
2.		Write in brief the importance of Statistics in managerial decision making.							
3.	a) b)	Why is standard dedispersion? Which of the followir (i) Mean = 22 (ii) Mean = 23		ition is n = 24	nore skev standar		tify. ion = 10	4+6=10	
4.	a) Explain Time Reversal Test (TRT) and Factor Reversal Test (FRT).b) Fit a straight line trend of the following data and estimate sales for the year 2018							4+6=10	
		•	2013 20	2014 18	2015 19	2016 22	2017		
5.	inches and standard deviation 3.0 inches, how many students have height (i) Greater than 72 inches (ii) Less than 64 inches (iii) Between 65 and 71 inches							3+3+4=10	
		[Given $Z = 1.00$ A = 0.8413 0.9082]	1.33					-	
6.	a) b)								
		Sales	Advertis	ing expe	nditure				
		(₹ in crore)(₹ in crore) Mean Standard deviation Coefficient of correlat	35 13	0.85		8 2			
	 (i) Estimate the likely sales for a proposed advertisement expenditure of ₹12 crores 								
	(ii)	What would be the actarget of ₹50 crores.	dvertising	expendi	ture if th	ne firm fi	xes a sales		
				[3]			USTN	1/COE/R-01	

7. a) Write the steps of testing of hypothesis.

5+5=10

10

b) The following table gives the number of aircraft accidents that occurred during the seven days in a week. Find at 5% level of significance, whether the accidents are uniformly distributed over

Days : Mon Tue Wed Thu Fri No. of accidents: 14 18 12 11 15 [Given, the critical value of $\chi 2$ at 5% level of significance and 5 degree of freedom is 11.07]

8. Solve the following LPP Maximize Z = 5x + 6y

> Subject to $2x + 3y \le 18$

 $2x+y \le 12$ $3x + 3y \le 21$ $x,y \ge 0$

== ***==