SET

A

M.Sc. CHEMISTRY FIRST SEMESTER **QUANTUM CHEMISTRY-I**

MSC - 104
[USE OMR FOR OBJECTIVE PART]

Duration: 1:30 hrs.

Full Marks: 35

(Objective)

Time: 15 mins.

Marks: 10

Choose the correct answer from the following:

 $1 \times 10 = 10$

- 1. The degeneracy of energy value $\frac{7h^2}{4ma^2}$ of a partite of mass m in a cubical box of sides "a"
 - a. 6

- 2. The x component of linear momentum operator \hat{p}_x is----

$$i=\sqrt{-1},\ h=\frac{h}{2\pi}$$

- a. $\frac{h}{i} \frac{\partial}{\partial x}$ c. $-i h \frac{\partial}{\partial x}$

- 3. If N_n be the number of nodes in a state 'n' of a particle in 1-D box then $N_2:N_1$ is
 - a. 1
 - c. Infinity

- b. 2
- d. Zero
- 4. The ground state energy of a linear harmonic oscillator is--
 - a. Zero
 - c. $\frac{1}{2}\hbar v$

- b. $\hbar\omega$ d. $\frac{1}{2}\hbar\omega^3$
- 5. The normalization constant of ϕ equation of a rigid rotor in spherical polar coordinate (r,θ,ϕ) is
 - a. $(2\pi)^{-1/2}$

b. $(2\pi)^{-1}$

c. $(2\pi)^{1/2}$

- d. 217
- 6. Which of the following is a fundamental property of quantum mechanical operators?
 - a. They commute with all other operators.
- b. They obey classical mechanics.
- c. They are non-Hermitian.
- d. They describe the state of a quantum system.

7.	If two operators A and B commute, what caeigenstates? a. They do not exist c. They are orthogonal	an be said about their simultaneous b. They are identical d. They are parallel
8.	What is a Hermitian operator? An operator that operates only on Hermitian matrices An operator that only works in a solitary system	b. An operator that is equal to its own adjointd. An operator used in the study of hern crabs
9.	In quantum mechanics, what does the eigera. Probability density c. Spin	nvalue of a Hermitian operator represent? b. Energy d. Time
10.	In quantum mechanics, what physical quantum of Hermitian operators? a. Position and momentum c. Energy and time	ntity is associated with a non-commutativ b. Spin components d. Angular momentum

Descriptive

Time: 1 hr. 15 min. Marks: 25

[Answer question no.1 & any two (2) from the rest]

1. a. Write the Schrödinger equation of a rigid rotor in spherical

- polar coordinate and give the energy eigen values of it.
 b. What is the commutation value of (d/dx x)₂?
 a. A particle of mass 'm' is confined in a one dimensional box of length 'a'. The potential inside the box is zero and outside it is infinity. Calculate (i) energy and (ii) normalized wavefunction
 - using Schrodinger wave equation.b. What do you mean by degeneracy? Calculate the separation between two consecutive energy levels of a particle in 1-D box of length 'a'.
- 3. a. Establish Schrödinger wave equation of a 1-D simple
 harmonic oscillator using Hooks law potential and write the
 expression of energy of it. Mention the ground state wave
 function and draw the nature of wave function & probability
 density function for the ground and first excited state of the
 oscillator.
 - b. Using the normalized wave function for the particle of mass 'm' in a 1-D box of length a, calculate the average momentum (Px).
- 4. a. Find if the operators of kinetic energy & position commute or 2+2+1+3 not?
 - b. If A and B are two operators such that [A, B]=1, then find the value of commutator of A with B?
 - c. Find the commutation value of [k P_z , m Z^n]. (Where, k & m are constants)
 - d. Find the commutation value of $[L_x, x]$ and $[L_x, y]$.
 - e. Prove that T_x is hermitian. (Where, T_x is kinetic energy operator)

USTM/COE/R-01

3+2=5

3

- 5. a. If, A and B are hermitian, Find which of these are hermitian? AA^{\dagger} , AA^{\dagger} + $A^{\dagger}A$, $A + A^{\dagger}$, $A A^{\dagger}$
- 2+3+5 =10
- **b.** Derive the Schrodinger's Wave Equation for a particle in a 3-D box of length 'l'.
- c. construct the wave function plot for a particle in a 1-D box of length 'l' for n=2 quantum state by calculating all the values of 'l' over the entire box and calculate the 2nd excited state energy for the particle in the same box.

_ _ *** _ _