M.SC. MATHEMATICS THIRD SEMESTER **FUZZY SETS** MSM - 303E [USE OMR FOR OBJECTIVE PART]

Duration: 1:30 hrs.

Objective)

Time: 15 mins.

Marks: 10

1×10=10

Full Marks: 35

Choose the correct answer from the following:

1. Let U = (a, b, c, d) and A = (b, d) be a crisp set on U. A can be expressed as a fuzzy set on U by (numbers in the four sets representing membership grades of respective elements of U

under A.)

a. (0,0,1,1)

b. (0,0,1,0)

c.(0,1,0,1)

d. (1,1,1,0)

2. Membership grade of a fuzzy set on a domain *U* is a number *x* such that

a. 0 < x < 1

 $b.0 \le x < 1$

c. $0 \le x < \frac{1}{2}$

 $d.0 \le x \le 1$

3. For $0 < \alpha \le 1$, let denote the -cut of a fuzzy set on a domain . For 1 > 2

 $b._{\alpha_1} \subseteq A_{\alpha_2}$

 $a._1 = _2$ $c. A_{\alpha_1} \supseteq A_{\alpha_2}$

d. None of these

4. Consider a fuzzy set A given by A = (0, 0.9, 0.7, 0.4). Then level set L(A) of A is

a. (0.7, 0.9, 0.4)

b. (0.9, 0.4, 0.7)

c. (0.9, 0.4, 0.7)

d. (0.4, 0.7, 0.9)

5. Let A be a fuzzy set of \mathbb{R} defined by $A(x) = \begin{cases} 1 - e^{-x}, & \text{for } x \ge 0 \\ 0, & \text{for } x < 0 \end{cases}$. Then the height of A

a. 0

c. 1

d. 2

 $\begin{cases} 1 - e^{-x}, & \text{for } x \ge 0 \\ 0, & \text{for } x < 0 \end{cases}$. Then support of A is Let A be a fuzzy set of \mathbb{R} defined by A(x) =a. $x \ge 0$ b. x > 0

 $c. x \leq 0$

d. ..

7. Let *A* be a fuzzy set of \mathbb{R} defined by $A(x) = \begin{cases} 1 - e^{-x}, & \text{for } x \ge 0 \\ 0, & \text{for } x < 0 \end{cases}$. Then the core of *A* is

 $a. x \ge 0$

b.x > 0

 $c. x \leq 0$

d. None of these

- 8. Let *A* be a fuzzy set of \mathbb{R} defined by $A(x) = \begin{cases} 1 e^{-x}, & \text{for } x \ge 0 \\ 0, & \text{for } x < 0 \end{cases}$. Then the fuzzy set *A* is
 - a. Normal

b. Subnormal

c. Both are true

d. Both are false

9. Let A_1 and A_2 be two fuzzy sets on domains U_1 and U_2 respectively. The cartesian product of fuzzy sets A_1 and A_2 is a fuzzy set $A = A_1 \times A_2$ defined by a. $A(a_1, a_2) = \text{Min}\{A_1(a_1), A_2(a_2)\}$ b. $A(a_1, a_2) = \text{Max}\{A_1(a_1), A_2(a_2)\}$ c. $A(a_1, a_2) = \text{Min}\{1 - A_1(a_1), 1 - A_2(a_2)\}$ d. $A(a_1, a_2) = \text{Max}\{1 - A_1(a_1), 1 - A_2(a_2)\}$

10. Let $U = \{2,4,6\}$, $V = \{1,3\}$ be two sets of natural numbers. R will be a fuzzy relation from U to V if R(u,v), the membership grade of (u,v) under R is given by

a.	R	1	3
	2	0	1/2
	4	2/3	1
	6	-1	2
	R	1	3
	2	1/2	1/2

0 -1/22 1

0 1/5 -1 0 1

Descriptive

Time: 1 hr. 15 mins. Marks: 25

[Answer question no.1 & any two (2) from the rest]

- Explain briefly the motivation behind the definition of fuzzy sets.
 Explain the concepts of interval valued Fuzzy sets and Fuzzy sets of Type 2 with the help of diagrams.
- 2. a. When is a fuzzy set A on \mathbb{R} said to be convex? Prove that a fuzzy set A on \mathbb{R} is convex if and only if $A(\lambda x_1 + (1 \lambda)x_2) \ge \min\{A(x_1), A(x_2)\}.$
 - b. Define α -cut and strong α -cut for a fuzzy set A defined on a universal set U. Let A be a fuzzy set on $U = \{a, b, c, d\}$ defined by $A = \frac{0.8}{a} + \frac{1.0}{b} + \frac{0.3}{c} + \frac{0.1}{d}$

Denoting the α -cut and strong α -cut for A by A_{α} and $A_{+\alpha}$ respectively find $A_{0.2}$, $A_{0.3}$, $A_{+0.3}$, $A_{0.9}$, $A_{+0.9}$, $A_{+1.0}$

- 3. a. Define the following terms for a fuzzy set A with illustrations by examples scalar Cardinality of A, Height of A, Core of A and Support of A.
 - b. What do you know by normalization of a fuzzy set A? Normalise the fuzzy sets defined below -
 - the fuzzy sets defined below -(i) $A = \frac{0.2}{a} + \frac{0.5}{b} + \frac{6}{c} + \frac{0.8}{d}$ (ii) $B = \frac{0.6}{a} + \frac{0.4}{b} + \frac{0.5}{c} + \frac{0.3}{d}$

4. a. Explain the concept of fuzzification of a fuzzy set A.

5+5=10

Let $U = \{a, b, c\}$ and $A = \frac{0.3}{a} + \frac{0.6}{b} + \frac{0.7}{c}$. Also let K_a , K_b and K_c be defined on U by $K_a = \frac{0.7}{a} + \frac{0.4}{b}$, $K_b = \frac{0.4}{a} + \frac{1.0}{b} + \frac{0.4}{c}$ and $K_c = \frac{0.2}{b} + \frac{0.8}{c}$

Compute F(A), the fuzzification of the set fuzzy set A.

b. Let A_1, A_2, \dots, A_n be n fuzzy sets on n domains U_1, U_2, \dots, U_n respectively. Define a fuzzy set $A = A_1 \times A_2 \times \dots \times A_n$ on the domain $U_1 \times U_2 \times \dots \times U_n$.

Demonstrate $A = A_1 \times A_2$ on $U_1 \times U_2$

where
$$U_1 = \{a, b, c\}, \quad U_2 = \{x, y\}$$

$$A_1 = \frac{0.2}{a} + \frac{0.7}{b} + \frac{0.5}{c}, \qquad A_2 = \frac{0.5}{x} + \frac{0.3}{y}$$

5. **a.** What is an *n*-ary fuzzy relation on $U_1 \times U_2 \times \cdots \times U_n$, where U_1, U_2, \cdots, U_n are any *n* domains? Give an example of a binary fuzzy relation.

2+3+5

b. Let R be a fuzzy relation on $U \times V$ and α be such that $0 < \alpha \le 1$. Denote the α -cut of R by $R_{\alpha} = \{(u, v) \mid R(u, v) \ge \alpha\}$. Verify the decomposition theorem for R i.e., $R = \sum \alpha(R_{\alpha})$, by taking $R = \begin{bmatrix} 0.7 & 0.4 \\ 0.4 & 0.0 \end{bmatrix}$. Where R_{α} is an α -cut of R for $0 < \alpha \le 1$.

== *** = =