REV-01 MSP/34/17/22 2023/06

SET

FOURTH SEMESTER GENERAL THEORY OF RELATIVITY & ASTROPHYSICS MSP = 402

M.Sc. PHYSICS

			MSP - 402					
		JUSE OM	IR FOR OBJECT	TIVE PART				
Du	ration: 3 hrs.					Full Marks: 70		
			Objective)				
Tir	ne: 30 min.		(,		Marks: 20		
\boldsymbol{c}	hoose the cor	rect answer fr	om the foll	owing:		1 X 20=20		
1.	The equilibrium to be	n temperature wh	ich both P-P as	s well as C-N-0	O cycle possess	s is found		
	a.	$0.08 \times 10^{5} K$	b.		$1.5 \times 10^6 K$			
	c.	$1.6\times10^7 K$	d.		$1.99 \times 10^8 K$			
2.	If only the grav a. 13.8 B Yrs c. 30 M Yrs	itational energy r	b.,	would power 50 K Yrs 10 B Yrs	it up only to _	·		
3.		edshift is y from the surface	of a black hole b.		distance r=R _{Sch}			
4.	Fill in the blank: a. e ⁺ c. H	p + e →+ v (s	ymbols have t b. d.	Υ	aning)?			
5.	The typical den a. ρ = 106 gm/co c. ρ = 1032 gm/co		b.	ng to a white α ρ= 10 ¹⁴ gm/cα ρ= 10 ¹⁰¹ gm/c				
6.	6. The of a black hole is the point in space where all the mass of a black hole accumulates.							
	a. Point of NCc. X-ray free z			Event Horizo Singularity	on			
7.		he following gala	xies is most ac		mation?			
8.	The size (diamo a. 1000 LY c. 90000 LY	eter) of the Milky	b.	28000 LY 100000 LY				
9.	A star seen at the a. north	ne zenith at USTN	b.	ords from south west	the Celestial E	Equator		

10.	The covariant derivative of a second rank a. 1	tensor becomes a tensor of rank 12b. 2 d.4		
11.	The interval between two events is called time-like if a. $ds^2 > 0$ b. $ds^2 < 0$			
12.	c. $ds^2 \ge 0$ In a space-time diagram, the angle made a. Equal to $\frac{\pi}{4}$		s will be	
13.	Greater than $\frac{\pi}{4}$ The conjugate tensor of $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r^2 \end{pmatrix}$ is	d. All of these		
	a. $\frac{1}{r^2}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r^2 \end{pmatrix}$ c. $\frac{1}{r^2}\begin{pmatrix} r^2 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	b. $ \frac{1}{r^2} \begin{pmatrix} r^2 & 0 & 0 \\ 0 & -r^2 & 0 \\ 0 & 0 & r^2 \end{pmatrix} $ d. $ \frac{1}{r^2} \begin{pmatrix} r^2 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & -r^2 \end{pmatrix} $		
14.	The South Celestial Pole will be on the hoa. north pole c. USTM	orizon for an observer who is at the b. south pole d. equator	e	
15.	If the current time in UTC is 06:40 AM, that. 12:10 AM c. 5:10 PM	nen the time in IST is b. 12:10 PM d. 7:10 AM		
16.	The assumptions made in the Schwarzsch a. The space-time is vacuum c. The space-time is spherically symmetr	b. The space-time is asymptoti	cally fl	
17.			R _{αβγδ} is	
18.	The number of dependent components in a. 8 c. 10			
19.	The metric component $g_{\varphi\varphi}$ in the line-element be?		$d\varphi^2$) w	
	a. $r^2 \sin^2 \theta$ c. $\sin^2 \theta$	b. r ² d. 1		
20.	In four-dimensional manifold, the value o a. 1 c. 3	f the expression $\delta^{\mu}_{\sigma}\delta^{\sigma}_{\nu}$ is b. 2 d. 4		
		121	USTM/C	

(<u>Descriptive</u>)

Marks: 50 Time: 2 hrs. 30 mins.

[Answer question no.1 & any four (4) from the rest]

5+5=10	Explain the three main regions of H-R diagram. The Luminosity of star Sirius is $25.4L_{\odot}$, and its surface temperature $T=10000K$, find its radius using Stefan's Law. Given $L_{\odot}=3.85\times 10^{26}W$.	1.
6+2+2 =10	a.Derive an expression the Riemann curvature tensor in terms of Christoffel symbols of second kind.	2.
	b. Find the divergence of a scalar function.	
	c. Show that covariant derivative of the metric tensor vanish	
4+3+3 =10	 a. Draw the Minkowski space-time diagram showing time-like and light-like curves. 	3.
	b. Define time-like and light-like interval.	
	c. Using tensor transformation rule, convert the metric $ds^2 = dx^2 + dy^2$ into the cylindrical coordinates.	
5+5=10	Discuss how a white dwarf form. Explain briefly on electron degeneracy pressure.	4.
4+4+2	a.If A^{μ} is a tensor, then show that $\partial_{\nu}A^{\mu} + \Gamma^{\mu}_{\sigma\nu}A^{\sigma}$ is also a tensor.	5.
=10	 Express the field equations in terms of Ricci tensor and stress- energy tensor. 	
	c.State the cyclic property of the Riemann curvature tensor.	
2+4+4 =10	What do you understand by Hydrostatic Equilibrium of a star? Establish the relation of Hydrostatic Equilibrium between the pull of gravity and outward gas pressure. If a star of same size and mass of the Earth converts to a black hole, what would be its Schwarzschild radius?	6.

- 7. **a.**Find the Christoffel symbols $\Gamma^{r}_{\mu\nu}$ and $\Gamma^{\theta}_{\mu\nu}$ using the line-element $ds^2 = dr^2 + r^2(d\theta^2 + \sin^2\theta \ d\phi^2)$.
 - 4+4+2 =10
 - **b.** Derive an expression of the effective potential of Schwarzschild vacuum solution.
 - c. What do you mean by an event horizon?
- 8. Discuss the steps involve in the following fusion reactions that runs the energy production process in stars.P-P cycle.

C-N-O cycle

== *** = =