REV-01 MSM/26/31

> M.Sc. MATHEMATICS FOURTH SEMESTER CRYPTOGRAPHY & CODING THEORY MSM – 403C

> > [USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Objective)

Time: 30 min.

Marks: 20

Full Marks: 70

2023/06

1X20 = 20Choose the correct answer from the following: 1. Which of the following is a decisional problem? Problem checking a number $g \in G$ is a Problems of finding generator of a generator or not. cyclic group. c. Both (a) and (b). d. None of these 2. What will be the size of a key matrix if the plaintext is "DECEMBER"? b. 8×1 a. 1×8 d. 1×1 c. 8×8 3. The number of possible key in the Substitution cipher is a. 26 d. None of these c. 26×26 4. The function $f(n) = n^2 + 3n + 3$ is equal to a. $O(n^2)$ b. $\Theta(n^2)$ c. $\psi(n^2)$ d. None of these 5. Time required to add two binary number of length *m* and *n* is equal to: a. $O(\max\{m,n\})$ b. $O(\min\{m,n\})$ d. None of these c. 0 (mn)

6. Signature verification algorithm needs:

a. Secret key of the signer.

c. Both can be used.

b. Public key of the signer.

b. ElGamal Cryptosystem

d. None of these

7. Which of the following cryptosystem has randomized encryption algorithm?

a. RSA Cryptosystem

c. Rabin Cryptosystem d. All the above

,, ,

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE

Which of the following algorithm is based on Birthday Paradox?

a. Pollard's ρ method

b. Fermat's method

c. Pollard's p-1 method

d. None of these

9. In Elliptic curve cryptography, the inverse point of P = (r, s) is

a. (-r, -s)

b. (-r, s)

c. (r, -s)

d. (r,s)

10. The cardinality of an Elliptic curve E defined over \mathbb{Z}_p , for a p is a print a . At least $p+1+2\sqrt{p}$ b. At most $p+1+2\sqrt{p}$ c. Exactly equal to $p+1+2\sqrt{p}$ d. None of these	
11. C_x is the most likely codeword of x from a code C if $p(x \text{ recieved } C_x$ a. $\max p(x \text{ recieved } C \text{ sent})$ b. $\min p(x \text{ recieved } C \text{ sent})$ c. both may be possible d. None of these	
 Which of the following is/are not Polynomial times algorithm a. Algorithm for converting decimal to binary. b. Algorithm to find the natural numbers. 	e sum of first n
c. Algorithm to find the product of first d. All of these.	
13. Let $V = \langle S \rangle$ be a vector space with dimension 3, where $S = \{0001, 000\}$ number of distinct bases of V is)010,0100}. The
a. 7 b. 14 c. 18 d. 28	
14. Let $C = \{000,101,102,010,020,011,012,021,022\}$ be the linear code are value of dim C^{\perp} is	and $q = 3$. The
a. 1 b. 2 c. 3 d. 4	
15. No of generator matrix of a linear code $C = \{0000, 1010, 0101, 1111\}$	
a. 4 b. 6 c. 12 d. 24	
16. The information rate of a binary code $C = \{0000, 1011, 0101, 1110\}$ is a. $1/2$ b. $1/4$	
c. 2 d. None of these	
17. Which of the following pair of co-sets of $C = \{00000,10001,11011,00100,10101,01110,11111,00100,10101,01110,11111,00100,10101,01101,01110,11111,00100,10101,01101,01101,01110,11111,00100,10101,0110101,01101,01101,01101,01101,01101,01101,01101$.10}
a. $0001 + C$ and $1000 + C$ b. $0001 + C$ and $0100 + C$ c. $0011 + C$ and $1000 + C$ d. None of these	- C
 Which of the following is/are true? Finding gcd(a, b) is polynomial time a. algorithm and it is a computational problem. Finding gcd(a, b) is not polynomial c. time algorithm and it is a computational problem. Finding gcd(a, b) is not polynomial time algorithm and it is a computational problem. d. time algorithm and it problem 	decisional not polynomial
(2)	

[2]

- 19. A digital signature scheme consists of which of the following algorithms?
 - Key generation, signature generation and verification algorithms.
 - c. Key generation algorithm
- b. Signature generation and verification algorithms.
- d. Key generation and signature verification algorithms.
- 20. Which of the following is/are not public key cryptosystem
 - a. RSA scheme
 - c. Diffie-Helmann scheme
- b. ElGamal scheme
- d. None of these

Descriptive

Time: 2 hrs. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

- 1. For n=pq, where p and q are distinct odd primes, define $(n)=(p-1)(q-1)\gcd(p-1,q-1)$. Suppose that the RSA cryptosystem is modified by considering $ed\equiv 1 \pmod{(n)}$.
 - a. Prove that encryption and decryption are inverse operation in the modified cryptosystem.
 - **b.** If p=37,=79 and d=7, find e in this modified cryptosystem.
 - **c.** If p=37,=79 and d=7, find e in RSA cryptosystem.
- 2. Let *E* be the elliptic curve defined as $y^2 = x^3 + 2x + 7$ over modulo 8+2=10 31.
 - a. Show that $\#E_{31} = 39$.
 - b. Find 2P and its inverse.
- 3. a. Consider a memoryless binary channel probabilities

p(0 received | 0 sent) = 0.07

p(1 received | 1 sent) = 0.8

If codewords from the linear code {000, 100, 111} are being sent over this channel. Use the maximum likelihood decoding rule to decode the following received words:

- i) 010
- ii) 011
- b. Check the following whether the following code are selforthogonal or not.
- a) $C = \{0000, 1010, 0101, 1111\}$ over F2.
- b) $C = \{000, 001, 002, 010, 020, 011, 012, 021, 022\}$ over F3.
- 4. a. Find the dual of the following codeword *C*. Also find their dimension.
 - i) $C = \{0000, 1010, 0101, 1111\}$ over F2.
 - ii) $C = \{000, 001, 002, 010, 020, 011, 012, 021, 022\}$ over F3.

141

6+4=10

10

4+6=10

- **b.** Define distance of a code. Find the distance of the following codes:
- a) $C = \{00000, 00111, 11111\}$
- b) $C = \{00000, 00111, 12121\}$
- c) $C = \{000000, 001110, 111101\}$
- 5. a. Convert the decimal number -71 to binary form.b. Find the upper bound, lower bound and average bound of the
- 4+3+3 =10

- following functions: (i) $f(n) = 1^2 + 2^2 + \dots + n^2$
 - (ii) f(n) = n!
 - (iii) $f(n) = n \log n!$
- 6. Suppose Alice uses the ElGamal cryptosystem over elliptic curve $y^2 = x^3 + x + 6$ modulo 11 with public key (P, B), where the generator B = (2,7) and P = (7,2). Determine the ciphertext of the message (10,9).
- 7. a. Find a generator matrix and a parity-check matrix for the binary code 8+2=10
 - $C = \langle S \rangle$, where $S = \{11101, 10110, 01011, 11010\}$.
 - b.Let $C = \{0000, 1011, 0101, 1110\}$ be a linear code and q = 2. Using cosets, decode the following received word:
 - w = 1111
- 8. a. Prove that the 5th Fermat number $F_5 = 2^{2^5} + 1$ is composite. 5+5=10
 - **b.** Prove that the algorithm to compute n! is not polynomial time algorithm.

== *** ==