B.Sc. PHYSICS SIXTH SEMESTER STATISTICAL MECHANICS BSP - 602

[USE OMR FOR OBJECTIVE PART]

2023/06

Marks: 20

1X20 = 20

Full Marks: 70

Duration: 3 hrs.

Time: 30 min.

Objective]

Choose the correct answer from the following:

- A Γ space is a representation of ---?
 - a. 6 D

 - c. 3 D
- 2. The classical statistics failed to explain---?
 - a. Temperature
 - c. Energy
- 3. The equilibrium state is the state of ---? a. Minimum entropy and maximum
 - thermodynamic probability Minimum entropy and minimum
 - c. thermodynamic probability
- 4. The bosons have a spin of----?
- 1/2
- 0 or integral c.
- Which of the following statement is true? When bosons are cooled to a low
 - a. enough temperature, their behavior changes.
 - BE statistics is obeyed by gas c. molecules.
- 6. Higgs boson has a spin ---?
 - a. 0
- Root mean square speed is given by

a.
$$\sqrt{\frac{kT}{2m}}$$

- b. 6N D
- d. 3N D
- b. Pressure
- d. Electron gas
- b. Maximum entropy and maximum thermodynamic probability
- Maximum entropy and minimum thermodynamic probability

Random

- -1/2
- Bose-Einstein statistics is

applicable to electrons.

- d. BE statistics is for half integral spin particles.
- b. 1

b.

d.

- 1/2

8.	In classical	statistics,	which of the	following statemen	t is true?
----	--------------	-------------	--------------	--------------------	------------

- b. The wave functions do not a. The wave functions overlap. overlap.
- d. The wave functions vanish. c. There is no wave function.

9. The Kirchoff's law of black body radiation is
$$E_{\lambda} = ?$$

c. (T, μ, V)

a. (m,T,n)

a.
$$\frac{e_{\lambda}}{a_{\lambda}}$$
 b. $\frac{a_{\lambda}}{e_{\lambda}}$ c. $\frac{e_{\lambda+1}}{a_{\lambda}}$ d. $\frac{e_{\lambda-1}}{a_{\lambda}}$

a.
$$T < T_B$$
 b. $T > T_B$ c. $T = T_B$ d. $T \approx 0$

11. In grand canonical ensemble, which one of the following remains constant? a.
$$(T, N, V)$$
 b. (N, E, V)

c.
$$(T,\mu,V)$$
 d. (T,E,V)

12. Which one of the following option is correct?

1)
$$\pi$$
-meson 2) proton 3) neutrino 4) α -partice a. (1, 2) are fermions b. (2, 4) are bosons c. (1, 2) are bosons d. (2, 3) are fermions

13. For degeneracy, the value of
$$\alpha$$
 depends upon which of the following?

b.(T,n,V)

c.
$$(k, n, m)$$
 d. (μ, β, n)

14. The mean energy in terms of partition function is given by

a. $\frac{\partial}{\partial \beta}(\ln Z)$ b. $-\frac{\partial}{\partial \beta}(\ln Z)$

c. $\frac{\partial}{\partial \alpha}(\ln Z)$ d. $-\frac{\partial}{\partial \alpha}(\ln Z)$

$$\frac{\partial}{\partial \beta}(\ln Z)$$

$$\frac{\partial}{\partial \alpha}(\ln Z)$$

$$\frac{\partial}{\partial \alpha}(\ln Z)$$

$$\frac{\partial}{\partial \alpha}(\ln Z)$$

$$\frac{\partial}{\partial \alpha}(\ln Z)$$

a.
$$\prod_{i=1}^{k} \frac{g_i!}{(g_i - n_i)!}$$
b.
$$\prod_{i=1}^{k} \frac{g_i!}{n_i! (g_i - n_i)!}$$
c.
$$\prod_{i=1}^{k} \frac{g_i!}{n_i! (g_i - n_i)!}$$
d.
$$\prod_{i=1}^{k} \frac{g_i!}{n_i! (g_i + n_i)!}$$

- a. According to Planck's hypothesis, the resonators absorb or emit energy continuously.
- c. Rayleigh-Jeans law cannot explain the shorter wavelength region.
- b. A black body radiation chamber is also filled with Planck oscillators.
- d. The energy distribution of black body spectrum is not uniform over a wide range of wavelength.

USTM/COE/R-01

121

- 17. In quantum statistics, the particles are---?
 - Identical and Indistinguishable.

c. Identical and Distinguishable.

- b. Non-Identical and Indistinguishable.
- d. Non-Identical and Distinguishable.
- 18. Bose-Einstein distribution function is given by $n_i =?$:
 - a. $\frac{g_i}{e^{\alpha+\beta E_i}}$

b. $\frac{g_i}{e^{\alpha+\beta E_i-1}}$

c. $\frac{g_i}{e^{\alpha+\beta E_i}-1}$

- d. $\frac{g_i}{e^{\alpha+\beta E_{i+1}}}$
- The total energy in terms of partition function of an equilibrium system is given
 - a.
- $E = NkT^{3} \frac{\partial}{\partial \beta} (\ln Z)$ $E = -NkT^{2} \frac{\partial}{\partial T} (\ln Z)$
- b.
- $E = NkT \frac{\partial}{\partial T} (\ln Z)$ $E = NkT^2 \frac{\partial}{\partial T} (\ln Z)$

- 20. The Gibbs potential in terms of partition function of an equilibrium system is given by
 - a. $G = RT + NkT(\ln Z)$ c. $G = RT^2 NkT(\ln Z)$
 - b. $G = -NkT(\ln Z)$
- d. None of these

$\left(\begin{array}{c} \underline{\textbf{Descriptive}} \end{array}\right)$

Time: 2 hrs. 30 mins. Marks: 50

1. Derive the Maxwell-Boltzmann law of velocity distribution and

[Answer question no.1 & any four (4) from the rest]

	show the temperature variation of the distribution.	
2.	a. Derive the Boltzmann entropy relation and explain its significance.b. Find out the no.of possible ways in which 2 particles can be distributed in 3 compartments using Maxwell Boltzmann statistics elaborately and their probability of togetherness and separateness.	5+5=1
3.	a. Explain black body radiation and its construction.b. State Planck's hypothesis and derive Planck's formula for black body radiation in terms of wavelength and frequency.	3+7=1
4.	State and derive Wein's displacement law.	10
5.	What is Bose Einstein condensation? Derive the Bose Einstein condensation equation.	2+8=10
6.	What is Fermi gas and Fermi energy? Derive the Fermi energy of free electron gas and find out its value for electrons in a metal.	2+8=10
7.	What is partition function? Find out the relation between entropy and partition function. Derive any five of the thermodynamic properties using partition function.	1+4+5 =10
8.	Derive the Bose- Einstein law of energy distribution and find out	8+2=10

== *** ==

distribution.

USTM/COE/R-01

10