REV-01 BMB/19/24

B.Sc. MICROBIOLOGY FOURTH SEMESTER CHEMISTRY-II BMB-405 [USE OMR SHEET FOR OBJECTIVE PART]

Full Marks: 70

2023/06

SET

Duration: 3 hrs.

Time: 30 mins.

(Objective)

Marks: 20

Choose the correct answer from the following:

1 ×20=20

- 1. Keesom interaction is:
 - a. Dipole-dipole interaction
 - c. Induced dipole-induced dipole interaction
- b. Dipole-induced dipole interaction
- d. None of the above
- Solubility of ethanol is highest in:
 - a. Propanol

- b. Propane d. Oil
- c. Octane 3. Which is true about Latimer diagram?
 - a. Shows relative stability of different oxidation states
- b. Shows standard reduction potential connecting various oxidation states of an element

c. Both a and b

- d. None of the above
- 4. Which statement is not true about hydrogen bond?
 - a. It is special type of dipole dipole interaction
 - c. It increases boiling point of polar protic compounds
- b. It forms between hydrogen and highly electropositive elements
- d. None of the above
- 5. Transition metal complexes are colored due to:
 - a. Variable oxidation state
- b. Presence of partially filled d orbital
- c. Splitting of d orbitals and transition of electrons between two different energy states
- d. None of the above
- Boiling point of a compound is related to:
 - a. Vanderwall's force
- b. Hydrogen bond

c. Both a and b

- d. None of the above
- Find the paramagnetic species.
 - a. CN-

b. NO

c. CO

- d. O2-
- 8. Find the diamagnetic species.
 - a. H₂

b. H2-

c. He2*

d. H₂+

9.	The hybridization of XeF ₄ is:		
	a. sp³d		sp ³
	c. sp ³ d ²	d.	sp ²
10.	Find the molecule having the highest bond order.		
	a. O ₂ +		O ₂ -
	c. O ₂ ² -	d.	O_2
11.	The formal charge of O ₃ molecule is:		
11.	a1,+1,-1	b	-1,0,+1
	c. +1,+1,-1		None of the above
12.	Which of the following species are isoelctronic?		
	a. N ₂ , CO, NO ⁺		O_2 , N_2 , CO
	c. O ₂ , NO, CO ₂	d.	All of the above
13.	The geometry of BF ₃ molecule is:		
	a. Trigonal planar	b.	Tetrahedral
	c. Square planar		All of the above
14.	[Ni(CN) ₄] ²⁻ has which geometry?		
	a. Square planer		Trigonal bipyramid
	c. Tetrahedral	d.	None of the above
15.	Fe atom in [Fe(CN) ₆] ⁴⁻ is:		
	a. dsp ² hybridized	b.	d ² sp ³ hybridized
	c. sp ³ d ² hybridized		None of the above
16			
16.	[Co(NH ₃) ₆][Cr(CN) ₆] and [Co(CN) ₆][Cr(NH		
	a. Polymerization Isomerism		Coordination Isomerism None of the above
	c. Linkage Isomerism	α.	None of the above
17.	Trans-isomers are optically:		
	a. Active	b.	Inactive
	c. Opaque	d.	None of the above
18	$[Fe(CN)_{\delta}]^{4-}$ is a low spin complex, because CN- is a:		
10.	a. Strong field ligand		Weak field ligand
	c. Ferromangetic species		None of the above
			Note of the above
19.	Square planer complex is a s special case of:		
	 Tetragonal bipyramidal complex 	b.	Tetrahedral complex
	c. Octahedral complex	d.	None of the above
20.	Greater the CFSE of the complex,		
	a. Smaller is the stability of the complex	b	Greater is the stability of the complex
	c. It becomes optically active		None of the above

-- --- --

2 USTM/COE/R-01

Descriptive

Marks: 50 Time: 2 hr. 30 mins. [Answer question no.1 & any four (4) from the rest] 1. a) Discuss all types of Vander wall's forces seen in compounds .1 showing examples. b) Write the postulates of VSEPR theory. 3 c) Name the following according to IUPAC system. (i) K₄[Fe(CN)₆] (ii) K[Ag(CN)₂] (iii) [Cu(NH₃)₄]SO₄ 2. a) Explain the significance and utility of Latimer diagram of an element 5+5=10 in different oxidation states. b) Explain the origin of color observed in transition metal compounds, considering the crystal field theory. 3+3+4=10 3. a) How do intermolecular forces affect solubility? b) Why propane has boiling point of -42 °C but ethanol has 78 °C? c) Discuss how shape of molecules and number of electrons held by molecules affect Vander wall's force. 4. a) Explain the trend of boiling points of H₂O, H₂S, H₂Se and H₂Te. 3 3 b) Calculate the formal charge of NO2 molecule. 4 c) When does strong distortion occur in an octahedral complex? What are its impacts? 5. a) Explain the molecular orbital energy level diagram of O₂ and O₂* 6+4=10 ions and calculate bond order, magnetic moment for each ion. b) Explain the structure of SF₆ molecule using hybridisation. 2+3+3+2=10 6. a) Why He₂ molecule does not exist? b) Define hydrogen bonding? Why O -nitro phenol is more volatile than p-nitro phenol? c) Calculate the bond order of N2+ ion using molecular orbital energy level diagram. d) Mention the hybridization of the following molecules/ions. (iii) CHr (iv) PCI₅ (i) CO₂ (ii) CH₃+ 7. a) Why does Cu (II) form Square planer complexes rather than 4+6=10 tetrahedral complexes? b) Give a brief account of the splitting of d-orbitals in an octahedral field. 8. a) Draw the possible geometrical isomers of $[Co(en)_2Cl_2]$. 6+4=10 Which one of them is optically active and why? b) Give a brief account of the optical activity of Trioxalato Chromate (III) ion. = = *** = =

USTM/COE/R-01