SET

B.Sc. CHEMISTRY SECOND SEMESTER ORGANIC CHEMISTRY-I BSC – 201 [REPEAT] [USE OMR FOR OBJECTIVE PART]

Full Marks: 70

Duration: 3 hrs.

(Objective)

Marks: 20

Time: 30 min.

Choose the correct answer from the following:

 $1 \times 20 = 20$

- 1. An inductive effect refers to the movement of electrons through
 - a. пbonds

b. p orbitals

c. non-polar bonds

- d. sigma bonds
- 2. Molecules which will exhibit geometrical isomerism

$$H_3C-C=C-Br$$
 H_3C
 H_3C
 H_3C
 H_3C

 $H_3C-C=C-CH_2-CH_3$

3

a. 2&3

b. 1,2&3

c. 1&2

d. 1&3

3. Which one is the product of the following reaction?

Br₂

EtOH, H₂O
→ Produc

a. OH Br

d.

c. |

OH Br

1.	Identify the correct order of from the following compoun	reactivity d.	in electrophi	ilic aromatic subst	itution reaction
				NO ₂	
	i)	ii)	iii)	iv)	
	a. ji > jij > jv > j c. jji > ji > j > jv			i > iii > iv ii > iv > i	
5.	The major product of dehyda. (CH ₃) ₂ C=CHCH ₃ c. H ₂ C=C(CH ₃)CH ₂ CH ₃	ration of 2-	Methyl-2-But b. CH ₃ CF d. (CH ₃) ₃	I = CI + CI + 12CI + 13	SO ₄ is
6.	What is the IUPAC name fo	r the follow	ing compoun	nd?	
		H ₃ C	H	CH ₃	
	a. Dimethyl cyclohexane . c. Cis-1,3-dimethylcyclohe	exane		methylcyclohexand -1,3-dimethylcyclol	
7.	Which one is NOT Aromati	ic?	b. [

8. Which of the following are D-glyceraldehyde?

OH CHO
$$+$$
 CHO $+$ CHO $+$ CHO $+$ CH₂OH $+$ OH $+$ O

2

USTM/COI

9.	AntiMarkovnikov addition of HBr is not a. Propene c. 2-Butene	observed in b. 1-Butene d. 1-Pentene
10.	Predict the product formed in the followi	[1] ng reaction
	H ₃ C-C=C-H + H ₂ O	H_2SO_4 ?
	a. OCH ₃	b. CH ₃ CH=CHCH ₃
	c. CH ₃ CH=C(OH)CH ₃	d. CH ₃ CH=CHCH ₂ OH
11.	2-Butene on hydroboration followed by t a. 1-Butanol c. Butanal	reatment with alkaline H ₂ O ₂ gives b. 2-Butanol d. None of these
12,	The Diels-Alder reaction is a a. $2\pi + 2\pi$ Cycloaddition c. $4\pi + 4\pi$ Cycloaddition	b. $2\pi + 4\pi$ Cycloaddition d. $4\pi + 6\pi$ Cycloaddition
13.	Carbocations are carbon atoms with a negative charge carbon atoms with no charge	b. carbon atoms with a positive charged. any atom with a positive charge
14.	Total number of stereoisomers possible f	or the molecule CH ₃ -CH(OH)-CH=CH-CH
	are a. 2 c. 4	b. 3 d. 6
15.	Brønsted-Lowry acids are defined as a. proton donors c. electron pair donors	b. proton acceptorsd. electron pair acceptors
16.	The number of racemic forms of molecula. 2n c. 2 ⁿ⁻¹	les having (n) number of chiral carbons is. b. 2 ⁿ d. 2 ⁿ⁺¹

17. The configuration of the following optical isomers

HOOC
$$C_2H_5$$
 $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$

3

a.
$$x \rightarrow R, y \rightarrow S, z \rightarrow S$$

b.
$$x \rightarrow S$$
, $y \rightarrow S$

a.
$$x \rightarrow R, y \rightarrow S, z \rightarrow S$$

c. $x \rightarrow R, y \rightarrow R, z \rightarrow S$

b.
$$x \rightarrow S$$
, $y \rightarrow S$, $z \rightarrow R$
d. $x \rightarrow R$, $y \rightarrow R$, $z \rightarrow R$

A conjugate base results from a. an acid losing a proton

b. a base accepting a proton

d. a base accepting an electron pair

Dehydrohalogenation of 2-Bromobutene with alc.KOH gives mainly a. 1-Butene b. 2-Butene

c. 2-Methylpropene

b. 2-Butened. 2-Butanol

Which of the following molecules are optically inactive?

a. y and z

c. x and z

b. x and y d. y only

4

USTM/COE/R-01

(<u>Descriptive</u>)

Time: 2 hrs. 30 mins.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

1. a. Discuss about the relative reactivities of alkanes towards halogenations.

4+6=10

b. Predict the products formed in the following reactions.

(i)
$$CH_3CH_2Br$$
 + $2Na$ + CH_3Br $\xrightarrow{Dry \ ether}$?

(ii) $+$ $2Na$ + $CH_3CH(CI)CH_3$ $\xrightarrow{Dry \ ether}$

(v)
$$C_2H_5COONa$$
 + NaOH CaO ?

2. a. What is Wurtz reaction? Explain with suitable mechanisms. What are the advantages and disadvantages of Wurtz reaction?

6+4=10

b.What is Wurtz-Fittig reaction? Explain the mechanism of the reaction with suitable examples.

• a. Which one of the following compounds will give precipitation in the presence of AgNO₃? Justify your answer.

Br Br Br (III)

- **b.**What is Annulene? Write the structure of 8-annulene and comment whether it is aromatic, antiaromatic or nonaromatic.
- **c.** Which of the following compounds will react with SbCl₅? Justify your answer.

. a. What is Diels-Alder reaction? Explain with examples.

with examples. 3+4+3= 10

- b. What is Hoffmann and Saytzeff rule? Explain with examples about the use of these two rules.
- c. Explain with examples about the Markovnikov's and anti-Markovnikov's addition of alkenes.
- a. Define specific rotation of an optically active compound.
 2+3+3+ 2=10

b.30 mg of an optically active compound dissolved in 1 cm³ ethanol solution in 10 cm long polarimeter cell, gave optical rotation (-) 4.2 ° at 20 °C. Find the specific rotation of the optically compound.

c. Convert the following structures:

(i) $\begin{array}{c|c} CH_3 \\ H & OH \\ CI & C_2H_5 \end{array}$ to Newman's projection (ii) $\begin{array}{c|c} H_3C & H \\ H_3C & H \end{array}$ to $\begin{array}{c|c} H_3C & H \\ H_3C & H \end{array}$

6

USTM/COF/R-01

3+3+4=10

d. Assign R and S configurations for chiral centres in the following molecule

6. a. Explain homolytic and heterolytic fission with examples.

2+3+3+ 2=10

- b.What are nucleophiles? How are they generated? Which of the following are nucleophiles? AlCl₃, CH₃OH, FeBr₃, SO₃
- c. What are carbenes? Explain singlet and triplet carbenes.
- d.Define the following with examples
 - (i) addition reaction and (ii) substitution reaction
- 7. a. What is Mesomeric effect? Give one example of a system this effect is operative.

3+3+4=10

- **b.**What is Resonance effect? What is the essential difference between Inductive effect and Resonance effect?
- c. Define hyperconjugation. What do you mean by isovalent and heterovalent hyperconjugation? Explain with suitable examples.
- 8. a. Draw Newman's projection for Chair and boat conformations of cyclohexane. Mention axial and equitorial bonds of cyclohexane.

3+3+4=10

- b. Why chair conformation of cyclohexane is more stable compared to boat conformation? Explain.
- c. Discuss in details conformations of methyl cyclohexane. Present these forms in Newman's projection. Draw energy profile of inter conversions of these forms with explanations.

== *** ==