B.Sc. CHEMISTRY SIXTH SEMESTER INORGANIC CHEMISTRY IV BSC - 601 SPECIAL REPEAT

Δ

SET

2023/08

Full Marks: 70

Duration: 3 hrs.

Objective

Time: 30 min.

Marks: 20

1X20=20

Choose the correct answer from the following:

1. Homogeneous hydrogenation of alkene with Wilkinson catalyst take place in b. 1 Atmospheric Pressure & 25° C a. 10 Atmospheric Pressure & 25° C c. 1 Atmospheric Pressure & 25 ° F d. 1 Atmospheric Pressure & 25K

- 2. In the Hydroformylation of alkene, what reaction gives linear aldehyde? b. Anti-Markovnikov a. Markovnikov
 - c. Fridel-Craft reaction d. Wilkinson Catalysis
- 3. The Water Gas shift reaction $CO_{(g)} + H_2O_{(l)} = CO_{2(g)} + H_{2(g)}$ is b. Endothermic a. Exothermic d. Endothermic-entropy driven. c. Exothermic- entropy driven
- 4. In which complex there is only O-bond between the ligand and metal atom? b. (η5- C5H5)2Fe a. W(CH₃)₆
 - d. CH₃Mn(CO)₅ c. K[Pt(C2H4)Cl3]
- 5. Choose the Catalyst for preparation of Isotactic Polypropylene b. Wacker Catalysts a. Wilkinson Catalysts
- d. Lithium Alkyls c. Ziegler-Natta catalysts 6. Zeise' salt is
 - b Potassium trichloro (ethylene palatinate) a Potassium-platinum chloride hydrate d None of the above. c Potassium ethylene trichloride
- 7. The ions are precipitated when the b Ionic concentration is greater than
 - solubility product. solubility product. d None of the above c Ionic concentration is smaller than
- 8. Interfering acid radicals interfere with systematic analysis b After group II

a Ionic concentration equals the

solubility product

- a. After group V d None of the above c. After group III A
- Terminally bonded CO group absorbs at b 1800-1700 cm-1 a 2050 -1900 cm-1
 - d None of the above c 1900-1800 cm-1

[1]

212	yl cation	n abe	orbs at	
			b A higher frequency as co	mnared to
I	ompared	toa	neutral metal carbonyl	inpared to a
	neutral m	netal	d None of the above.	
is	confirm	ned by	1	
ру		,	b. IR-spectroscopy	
			d. None of the above.	
	of Fe (C		b. Photolysis of Fe (CO) ₅	
on	n Fe (CO	0)5	d. None of the above	
ier	nyl rhodi	ium h	nas a	
			b. Square planar geometry	
8	geometry	У	d. None of the above.	
ipo	oration v	with		
			b. NaOH	
			d. None of the above.	
e c	degree of	f diss	ociation is proportional to	
n			b. The concentration	
nt			d. None of the above.	
in	[PtCl ₂ (N	VO ₂)(I	NH ₃)]-	
	-(-	-/(-	b. +2	
			d. +5	
cc	orrect sta	ateme	nt for outer sphere mechanis	m
-	orrect sta	iteme	b. No formation of bridged	
d	be in san	me	d. All of the above	
re	good bri	idging	g ligand	
		0 (b. NCS-	
			d. All of the above	
th	he condit	tions	of outer sphere mechanism	
	not be in			e in same
			d. None of the above	
of	orbitals			
ph	nere mech	hanis	m is	
	abile		b. Two metal atoms forming	g a bridge
			complex	
a	re brokei	n	d. All of the above	
			[2]	
				USTM

USTM/COF/R-01

$\left(\underline{\text{Descriptive}} \right)$

Time: 2 hrs. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

1.	a. What is Zeise's salt? How is it prepared? Give its structure.	=10
	b. Write the synthesis of the following (i) cis & trans [Pt(C ₂ H ₄)(NH ₃)Cl ₂] (ii) cis & trans [Pt(NH ₃) ₂ Cl ₂]	-10
	c. Explain the bonding in Al ₂ (CH ₃) ₆ .	
2.	Explain the (i) Mechanism of Wilkinson's hydrogenation of alkene. (ii) Wacker catalysis for synthesis of aldehyde.	5+5=10
3.	Explain the bonding and structure of (i) Trialkyl aluminium (ii) K[Pt(C ₂ H ₄)Cl ₃]	5+5=10
4.	a. What is synergetic effect? Explain in terms of bonding in transition metal carbonyls.b. How is IR data able to explain the extent of back bonding in metal carbonyls?	5+5=10
5.	a. What is solubility product and common ion effect? How they related to precipitation of a compound?b. Why barium oxalate acts as interfering reagent in qualitative analysis. Explain why oxalate has to be removed before proceeding to group III.	5+5=10
6.	 a. Draw the structure of Ni (CO)₄. How is the structure justified by Raman Spectral studies? b. Write all the group reagents for qualitative group analysis of cations. 	3+2=5
7.	a. Define trans effect. Write the theories of trans effect.b. Explain the mechanism of nuleophilic substitution reaction in square planar complexes.	5+5=10
8.	Discuss the mechanism of two electron transfer reactions.	5+5=10

= *** = =