SET

M.Sc. MATHEMATICS SECOND SEMESTER TOPOLOGY & FUNCTIONAL ANALYSIS

MSM - 202 [USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Full Marks: 70

Objective)

Time: 30 min.

Marks: 20

Choose the correct answer from the following:

1X20 = 20

- 1. Let N denotes the set of natural number and let $E_n = \{n, n+1, n+2, \dots\}$ for $n \in \mathbb{N}$. If $\tau = {\phi, N, E_n}$, then
 - a. τ is not a topology on N
 - is a topology on N for some ∈N
- b. r is a topology on N
- d. None of these
- Let (X, \mathcal{T}_d) be a discrete topological space. Then which of the followings is/are true for \mathcal{T}_d ?
 - a. $\{\{x\}: \forall x \in X\}$ is a base
 - $\{\{x\} \colon \forall x \in X\} \text{ is always a countable}$
- b. $\{\{x\}: \forall x \in X\}$ is not a base
- d. $\{\{x\}: \forall x \in X\}$ is always a finite base
- Let $Y = [0, 1] \cup (2, 3)$ be a subspace topology of \mathbb{R} . Then
 - a. [0,1] is closed in Y.
- b. (2,3) is closed in Y.
- c. Both [0, 1] and (2, 3) are closed in Y.
- d. Neither [0, 1] nor (2, 3) is closed in Y.
- 4. Let \mathcal{T} denote the usual topology on the real line \mathbb{R} . The subspace topology $\mathcal{T}_{\mathbb{N}}$ defined on the set of natural number is
 - a. Equal to the discrete topology
 - c. Neither discrete nor indiscrete
- b. Equal to the indiscrete topology
- d. \mathcal{T}_N is not a topology
- Let $\mathcal{T}_1 = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}\}\$ be a topology on $X = \{a, b, c\}$ and $\mathcal{T}_2 = \{\phi, \{r\}, \{p, q\}, Y\}$ be a topology on $Y = \{p, q, r\}$. Find which of the following is/are closed mapping:
 - a. f(a) = r, f(b) = r, f(c) = r
- b. g(a) = p, g(b) = q, g(c) = p
- c. h(a) = r, h(b) = p, h(c) = q
- d. All the above
- Let *X* be a discrete topological space and $A \subset X$. Then ∂A is equal to
 - a. empty set
 - c. proper subset of X

- d. Any subset of X
- 7. Which of the following is/are false
 - a. Discrete topological space is 1st countable.
 - Every 1st countable space is 2nd c. countable.
- b. The real line with lower limit topology is disconnected
- d. The real line with lower limit topology is 1st countable

8.	Which of the following is/are open cover of a. $\mathcal{A} = \left\{ B\left(a, \frac{1}{2}\right) : a \in \mathbb{Z} \times \mathbb{Z} \right\}$ c. Both (a) and (b).	the real line \mathbb{R}^2 with usual topology $\mathbf{b}.\mathcal{A} = \{B(a,1): a \in \mathbb{Z} \times \mathbb{Z}\}.$ d. None of these
9.	Consider the following statements: P: The discrete topological space is a connect Q: The indiscrete topological space is separa a. P true, Q false c. Both P and Q are true	
10.	Discrete topological space is a. Compact. c. Second Countable	b. Connected d. None of these
11.	Let $T: X \to Y$ be a linear operator from a nor defined over the same field. Let us assume p: T is continuous at the origin. Then p is equivalent to the statement a. T is continuous on X c. T maps bounded sets in X into bounded sets in Y	
12.	Let T be a bounded linear operator from a both X and Y being defined over the same fing $S: \ T\ = \sup\{\ T(x)\ \ $. Then S is equivalent to the statement: a. $\ T\ = \sup\{\ T(x)\ _Y: x \in X, \ x\ _X$ $= 1\}$ c. $\ T\ = \inf\{K: K > 0 \text{ and } \ T(x)\ _Y \le K$ $\ x\ _X, \forall x \in X\}$	eld. Let S denote the statement
13.	A mapping $T: X \to Y$ from the normed space field is isometrically isomorphic if a. T is isometric	e <i>X</i> into the normed space <i>Y</i> over the same b. <i>T</i> is linear

- med space X into the normed space Y over the same
 - **b.** *T* is linear

c. *T* is linear and bijective

- **d.** *T* is isometric, linear and bijective
- **14.** Let *X* and *Y* be two normed spaces of dimensions *m* and *n* respectively over the same field *K*. *X* and *Y* are topologically isomorphic if

a. m > n

 $\mathbf{c.} \ m = n$

 \mathbf{d} . m is an integral multiple of n

15. Which of the following statement is true?

- a. Two different norms on a finite dimensional normed space are equivalent.
- b. Convergence or divergence of sequences in a finite dimensional normed space is dependent on the particular norm defined in it.
- c. A finite dimensional subspace of a normed space is closed in .
- d. An infinite dimensional subspace of a normed space is necessarily closed.

- **16.** For any vector v in a normed vector space $(X, \|\cdot\|)$
 - a. $\| \| \le 0$

b. || v ||≥0

c. $\|v\| < 0$

- d. ||v|| > 0
- 17. For vector v in a normed vector space X and a scaler λ in the underlying field \mathbb{R} of X
 - a. $\|\lambda x\| \le \|\lambda\| \|x\|$

b. $\|\lambda x\| \ge \|\lambda\| \|x\|$

c. $\|\lambda x\| \neq \|\lambda\| \|x\|$

- d. $\|\lambda x\| = \|\lambda\| \|x\|$
- 18. In a normed space $(X, \|\cdot\|)$ the closure of any subspace U of X is
 - a. Algebraically not a closed subspace.
 - b. Algebraically closed subspace.
 - c. Algebraically both open and closed.
 - d. Algebraically neither open nor closed.
- 19. Let $(X, \|\cdot\|)$ be a normed space over a field \mathbb{R} . For any fixed vector u and arbitrary vector x in X, define the translation function f_a such that $f_a(x) = a + x$. Then for any $x, y \in X$ (here d is the metric on X induced by the norm $\|\cdot\|$ in X)
 - a. $d((x), f_a(y)) \ge d(x, y)$

b. $d(f_a(x), f_a(y)) \le d(x, y)$

- c. $d(f_a(x), f_a(y)) = d(x, y)$
- d. $d(f_a(x), f_a(y)) \neq d(x, y)$
- 20. For any two vectors x, y in a normed vector space (X, $\|\cdot\|$)
 - a. $| \| x \| \| y \| | < \| x y \|$
- b. $| \| x \| \| y \| | > \| x y \|$
- c. $| \| x \| \| y \| | \le \| x y \|$
- d. $| \| x \| \| y \| | \ge \| x y \|$

Time: 2 hrs. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

- 1. a.Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Define $\mathcal{T}_A = \{A \cap U : U \in \mathcal{T}\}.$ Show that (A, \mathcal{T}_A) is a topological space.
 - b. Let A, B be the subspace topology of the topological space X and Y respectiviely. Prove that the product topology and subspace topology on $A \times B$ are same. Is the result true for order topology? Justify your answer.
- 2. a. Let X be any non-empty set. Define $\tau_f = \{A : X A \text{ is finite or } X\}$ and τ_d be the discrete topology on X.

 i) Show that τ_f is a topology on X.
 - **b.** Let (X, τ) be a topological space and let $\{A_{\alpha} : \alpha \in I\}$ be the collection
- of connected subspaces of X such that $\bigcap_{\alpha \in I} A_{\alpha} \neq \phi$. Prove that $\bigcup_{\alpha \in I} A_{\alpha}$ is connected.

ii) Prove or disprove that $\tau_f \subset \tau_d$. Is $\tau_d \subset \tau_f$?

- **3.** a. Prove that Every finite subspace of a topological space is compact.

 - c. Prove or disprove that- Every discrete topological space is compact.
- 4. Verify the following statements:a. Every Discrete Topological Space is second countable.

b. Prove that $-(0,1) \subseteq \mathbb{R}$ with usual topology is not compact.

- b. The lower limit topological space is second countable.
- 5. a.Let p be a real number with $1 \le p < \infty$ and ℓ_p^n , the vector space of all ntuples $f = (f(1), f(2), \dots, f(n)), f(i) \in \mathbb{R}, i = 1, 2, \dots, n$ in which norm
 of f is defined as

 $\| f \|_{p} = \left(\sum_{i=1}^{n} |f(i)|^{p} \right)^{1/p}$

Verify if $(\ell_p^n, \|\cdot\|_p)$ is a normed space or not.

[4]

USTM/COE/R-01

3+5+2

5+5=10

- b. Consider ℓ_x the set of all bounded sequences in K, where K is $\mathbb R$ or $\mathbb C$. For any $x = \langle x_i \rangle \in \ell_x$, $x_i \in K$ define $\|x\|_{\ell} = \sup\{|x_i|, x = \langle x_i \rangle, x_i \in K\}$. Prove that $(\ell_x, \|\cdot\|_x)$ is a Banach Space.
- 6. a. Let Y be any subspace of a normed space X. Show that if Y is complete then it is also closed in X. If Y is any closed subspace of a normed space X will it be complete in X? Justify your answer. 3+3+4=10
 - **b.** For any vectors x and y in a normed space $(X, \|\cdot\|)$, prove that

 $|| || x || - || y || || \le || x - y ||$.

- a. Let X and Y be any normed spaces over a field K and let B(X, Y) be the vector space of all bounded linear mappings from X into Y. Define ||·|| in B(x, y) such that || T || = sup{|| T(x) ||_Y : x ∈ X, || x ||_X ≤ 1}. Show that (B(X,Y), ||·||) is a normed space. Under what condition will (B(X,Y), ||·||) will be a Banach space?
 - b. What do you mean by topological isomorphism for normed spaces $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$. Show that the two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ defined on the same linear space X will be equivalent if and only if there exist K_1 and K_2 satisfying $K_1 \| x \|_1 \le \| x \|_2 \le K_2 \| x \|_1, \quad \forall x \in X$
- 8. a. Prove that any linear operator on a finite dimensional normed space 5+5=10
 - b. State Hahn Banach Theorem and apply it to prove that if N is a normed linear space and x_0 is non-zero vector in N, then there is a function f_0 in N^* such that $f_0(x) = ||x_0||$ and $||f_0|| = 1$.

== *** = =