M.Sc. MATHEMATICS SECOND SEMESTER (REPEAT) DIFFERENTIAL EQUATION-II MSM-202

[USE OMR SHEET FOR OBJECTIVE PART]

Full Marks: 70

Marks: 20

1X20=20

Duration: 3 hrs.

(PART-A: Objective)

Time: 30 mins.

Choose the correct answer from the following:

- 1. f(x) = |y| satisfies Lipschitz's condition.
 - a. True
 - c. Undetermined

b. False

d. None

d. None

d. Under some conditions

b. Cos(mCos-1x)

- 2. $T_n(x) =$
 - a. $Cos(nCos^{-1}x)$

 - c. Both a and b are correct
- 3. If $U_n(-1)$
 - a. 0
 - c. -1
- 4. $T_{2n+1}(0) =$

 - c. 1
- 5. $f(x) = e^x$ is an:
 - a. Even function
- b. 1

b. 1

d. None

d. None

b. 2π

d. None

- - c. Cannot be determined
- 6. f(x) = Sinx is a periodic function with period:
- a. 1 c. 0
- 7. $\beta(m,n) =$
 - a. $\beta(n,m)$
 - c. In
- b. Г*т*
 - d. All are correct

b. Odd function

- 8. $\Gamma(-\frac{1}{2}) =$
 - а. Г π
 - c. Cannot be calculated
- b. $-\Gamma\pi$
- d.0

9.
$$T_6(x) =$$

b. 1

c. Impossible to calculate d. None

10. tan x and cot x both have the:

a. Same period

b. Different period

c. No period d. None

If $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ then given system of differential equation are:

a. Compatible c. We cannot say

b. Non-compatible

d. None

12.
$$\frac{\partial z}{\partial x} = 5x + 4y$$
 and $\frac{\partial z}{\partial y} = 6x - 7y$ have:

a. Common solution

b. No common solution

c. No solution

d. None

13. If p = P(x, y) and q = Q(x, y) is a compatible system of equations then their general solution is:

$$a. dz = pdx - qdy$$

b. dz = pdx + qdy

c. Both a and b are correct

d. None

14. If $y_1(x)$ and $y_2(x)$ are two solutions of a 2nd order linear differential equation, then their linear combination:

a. Is also a solution of the same diff equn

b. Cannot be a solution of the same diff

equn

c. Both a and b are possible

d. None

15. Γ(-ve value) is:

a. Possible

b. Not possible

c. Possible under certain condition

d. None

16. $T_3(x) =$

a. 4x-3

b. 3x-2

c. 2x+5

d. None

17. $U_2(x) =$

a. $2x(1-x^2)^{1/2}$

b. 1

d. None

18. $p = x^2 - ay$ and $q = y^2 - ax$ are:

a. Compatible

b. Not compatible

c. Cant not be determined

d. None

19. If f(x+T) = f(x) then period is:

b. T d. None

c. Both a and b

20. $\beta(5,10) =$ b. 15151 a. 15150 c. 15152 d. None

[PART-B : Descriptive]

Time: 2 hr. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

 Solve the following one dimensional wave equation using variable separable method

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

- 2. a. Show that $\phi_1(x) = e^{2x}$, $\phi_2(x) = xe^{2x}$ and $\phi_3(x) = x^2e^{2x}$ 5+5=10 are linearly independent solutions of y''' 6y'' 8y = 0 on the interval $0 \le x \le 1$
 - b. Check whether the differential equations $\frac{\partial z}{\partial x} = 5x 7y$ and $\frac{\partial z}{\partial y} = 6x + 8y$ are compatible or not.
- 3. a. Illustrate by an example that a continuous function may not satisfy
 Lipscitz condition in a rectangle.

 5+5=10
 - **b.** Find Fourier series of the function f(x) = xSinx, $0 \le x \le 2\pi$
- 4. a. Show that $(1-x^2)^{1/2}T_n(x) = U_{n+1}(x) xU_n(x)$ 5+5=10
 - b. Prove that the continuity of f(x, y) is not enough to guarantee the uniqueness of the solution of the initial value problem

$$\frac{dy}{dx} = f(x, y) = \sqrt{|y|}, y(0) = 0$$

5. **a.** Show that $T_n(x)$ and $U_n(x)$ are the independent solutions of the

differential equation
$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + n^2y = 0$$

b. Prove that
$$\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$$

USTM/COE/R-01

10

$$\frac{dx}{dt} = S \operatorname{int} - y$$

$$\frac{dy}{dt} = \cos t - x$$

b. Prove that
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

7. a. Show that
$$\int_{-1}^{1} \frac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0, & m \neq n \\ \frac{\pi}{2}, & m = m \neq 0 \\ \pi, & m = n = 0 \end{cases}$$

b. What are the Euler's formula and Dirichlet's conditions for Fourier Series?

8. a. Use separation of variable method to solve
$$U_t = U_x + U$$
 with $U(x,0) = 6e^{-3x}$

b. State and prove Sturmm Liouville theorem.

5+5=10

5+5=10

5+5=10

-- *** -- -