2023/06

SET A

SECOND SEMESTER **COMPLEX ANALYSIS** MSM - 201

M.Sc. MATHEMATICS

[USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Time: 30 min.

Objective)

Marks: 20

Full Marks: 70

Choose the correct answer from the following:

1X20 = 20

1. The residue of

The principal value of $Log(i^{\frac{1}{4}})$ is

a. i 77

3. Consider the function $f(x) = x^2 + iy^2$ and $g(x) = x^2 + y^2 + ixy$ at z = 0 then

a. f is analytic but not g

b. g is analytic but not f

c. Both the functions are analytic

d. None is analytic

For $z \in C$ define $f(z) = \frac{e^z}{e^z - 1}$, then

a. The only singularities of f are poles

b. f has infinitely many poles in the imaginary axis

 \mathfrak{c} . Each pole of f is simple

d. All of the above

5. The function f(z) = |z| is

a. differentiable

b. Nowhere differentiable

c. Differentiable at z = 0

d. None

- 6. F is said to be entire if
 - a. F is analytic on C
- b. F is regular on C
- c. ∞ is the only possible singularity
- d. All of the above
- 7. An isolated singularity which is neither a removable singularity nor a pole is called
 - a. Essential singularity
- b. Essential removable singularity
- c. Isolated removable singularity
- d. None

- 8. The number $\sqrt{2} e^{i\pi}$ is
 - a. Rational Number

- b. A transcendental number
- c. An irrational number
- d. An imaginary number
- 9. A conformal transformation u = u(x,y), v = v(x,y) maps the curves C_1 and C_2 intersecting at $z_0 = (x_0, y_0)$ in xy plane respectively into the curves C_1 and C_2 intersecting at $w_0 = (u_0, v_0)$ in y_0 plane. The corresponding angles between the curves in the two planes at z_0 and w_0 are
 - a. equal in magnitude but does not
 - preserve the sense
 - c. equal in magnitude and preserve the sense
- b. not necessarily equal in magnitude but preserve the sense
- d. None of the above
- 10. The translation is a transformation from a z-plane to w-plane generally given by:

(
$$\alpha$$
 is a given complex number)

$$^{\mathbf{a}} \cdot \mathbf{w} = f(z) = \frac{1}{z}$$

$$\mathbf{c} \cdot \mathbf{w} = \frac{1}{1}$$

b.
$$w = z + \alpha$$

$$\mathbf{d.} \ \mathbf{w} = z^2 + \alpha$$

- 11. The transformation $w = e^{i\theta}z$ is
 - a. simply a translation.
 - c. simply a rotation.

- b. a combination of translation and rotation
- d. combination of stretching and rotation
- 12. The translation $w = f(z) = \alpha z$, where α is a given complex number is
 - a combination of rotation and stretching
- b. a combination of rotation and translation
- a combination of translation and inversion
- d. simply a stretching
- 13. The Jacobian of the transformation w = f(z) = (1+i)z + 1 i is
 - a.

b. 2

c. 4

- d. 1/
- The value of the integral $\int_C \frac{1}{|z|-1} dz$, C: |z|=4 is equal to
 - a. πi

b. 2πi

c. 4 ni

d. 0

RE'

In the Laurentz series of $\frac{Sin z}{z^2}$ at z = 0 the co-efficient of $\frac{1}{z}$ is

a. zero

c. -1

d. 1

 $f(z) = \frac{Sinz}{z^2} \text{ has}$

a. A removable singularity at z = 0

b. A pole of order 1 at z = 0

c. No singularities

d. An essential singularity at z = 0

The residue of $e^{\frac{1}{z}}$ at z = 0 is a. 2

b. ∞ d. -2

c. 1

The residue of $\frac{Sinz}{z^8}$ at z = 0 is

a. 0

b. 1 7!

d. None

19. 1-7 $\int_{0}^{1+7} (x^{2} - iy) dz \text{ along } y = x \text{ is}$ a. $-\frac{1}{6}(5 - i)$

b. $\frac{1}{6}(5-i)$

 $\frac{c}{-\frac{1}{6}}(5+i)$

 $\frac{d}{6}(5+i)$

 $\oint_C \frac{z^2 + 5}{z - 3} dz \text{ where } C \text{ is the circle } |z| = 1$

b. 2πi

 $c. - 2\pi i$

d. πi

[3]

USTM/COE/R-01

Descriptive

Time: 2 hrs. 30 mins.

Marks:50

[Answer question no.1 & any four (4) from the rest [

1. a. Determine the analytic function whose real part is $e^{2x}(xCos2y - ySin2y)$

5+5=10

- b. Determine the analytic function whose imaginary part is Sinhx Coshy
- 2. a. Prove that the angle between two curves C_1 and C_2 passing through the point z_0 in the z-plane is preserved in magnitude and sense under the transformation w = f(z) if f(z) is analytic at z_0 and $f'(z_0) \neq 0$.

5+5=10

- **b.** Find the Jacobian of the transformation $w = \sqrt{2} e^{i\frac{\pi}{4}}z + (1-2i)$.
- 3. a. If w = f(z) = u + iv is analytic in a region R prove that the Jacobian of the transformation is given by

5+5=10

- $J = \frac{\partial(u, v)}{\partial(x, y)} = |f'(z)|^2$
- **b.** Determine the region of w-plane into which the 1st quadrant of the z-plane is mapped by the transformation $w = z^2$.

5+5=10

- **a.** Calculate the integral $\int_{0}^{1+i} (x-y+ix^2)dz$ along the real axis from z = 0 to z = 1 and the along a line parallel to the imaginary axis from z = 1 to z = 1 + i
 - b. Evaluate $\frac{1}{2\pi i} \oint_C \frac{ze^z}{(z-a)^3} dz$ where C is the circle |z| = a

- 5+5=10 a. Evaluate $\oint \frac{Sin^6 z}{(z - \frac{\pi}{6})^3} dz$ where C is the circle |z| = 1

- b. State and prove Morera's theorem.
- a. Show that the function e^{-2xy} . $Sin(x^2 y^2)$ is harmonic
- 5+5=10
- b. Apply Residue theorem to evaluate $\oint \frac{2z-1}{z(z+1)(z-3)} dz$ where *C* is the circle $|z| = \frac{3}{2}$
- a. Apply Residue theorem to evaluate $\oint \frac{2z^2 + 5}{(z+2)^2(z^2+4)} dz$ on the circle C:|z|=3
 - b. Expand by Laurentz series $\frac{1}{z^2 4z + 3}$ for the region 1 < |z| < 3
- a. Evaluate the following integral by using Residue theorem 5+5=10 $\oint \frac{z}{(z-1)(z-2)^2} dz$ where C is the circle $|z-2| = \frac{1}{2}$
 - b. Expand by Laurentz series $\frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the region |z| > 4