SET

M.Sc. MATHEMATICS THIRD SEMESTER NUMBER THEORY

MSM - 301|SPECIAL REPEAT| **[USE OMR FOR OBJECTIVE PART]**

Duration: 3 hrs.

Full Marks: 70

Objective

Marks: 20 1X20=20

Choose the correct answer from the following:

- 1. For a nonzero integer a, gcd(a, 0) is:
 - a. a

Time: 30 min.

b. a

c. |a|

d. None of these

- 2. $2^{35} 1$ is divisible by
 - a. 31

b. 129

c. Both 31 & 129

- d. None of these
- 3. Suppose m, r > 0 and $\{a_1, a_2, \dots, a_t\}$ is a CRS modulo m then $\{a_1 + r, a_2 + a_3 + a_4 +$

- $r, \dots, a_t + r$ is a
- a. CRS modulo m iff (r, m) = 1
- b. RRS modulo m iff (r, m) = 1

c. RRS modulo m

- d. CRS modulo m
- 4. Which of the following is/are true
 - a. $a^{21} \equiv a \pmod{5}$

b. $a^{21} \equiv 1 \pmod{5}$

c. $a^{20} \equiv a \pmod{5}$

- d. None of these
- 5. If $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, where p is an odd prime, then
 - a. a is a quadratic residue of p
- b. a is a quadratic non-residue of p

c. a is a primitive root of p

- d. None of these
- 6. Which of the following primes satisfy the congruence $a^{24} \equiv 6a + 2 \pmod{13}$?
 - a. 41

b. 47

c. 68

- d. 83
- 7. The linear congruence $99x \equiv 1 \pmod{131}$ has
 - a. No solution

- b. Unique solution
- c. Finite number of solution

- d. None of these
- 8. If p is an odd prime, then $1^{167} + 2^{167} + 3^{167} + \dots + 166^{167} \mod 167$ is
 - a. 1

b. -1

c. 0

d. None of these.

- 9. The last two digits of 781 are
 - a. 47

b. 17

c. 37

d. 7

```
10. Consider the congruence x^n \equiv 2 \mod 13. This congruence has a solution if
                                                          b. n = 5
     a. n = 4
                                                          d. None of these
     c. n = 6
11. If \alpha is a primitive root of modulo n, then
                                                          b. n = 20
     a. n = 15
                                                          d. None of these
     c. n = 25
12. The value of \left(\frac{16}{31}\right) is:
     a. 0
                                                          b. 1
                                                          d. None of these
3. If p is an odd prime, then \sum_{a=1}^{p-1} {a \choose p} is
                                                          b. 1
     a. 0
                                                          d. None of these
     c. -1
14. If 2 is primitive root of 13 and a is a quadratic residue of 13, then
                                                          b. a = 6
     c. a = 7
                                                          d. a = 12
15. \left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) if
                                                          b. p \equiv 3 \pmod{4} or q \equiv 3 \pmod{4}
     a. p \equiv 1 \pmod{4} and q \equiv 1 \pmod{4}
     c. p \equiv 1 \pmod{4} or q \equiv 1 \pmod{4}
                                                          d. p \equiv 3 \pmod{4} and q \equiv 3 \pmod{4}
16. For the Fibonacci sequence, (u_n, u_{n+1}) is
                                                          b. 1, for every n > 1
     a. 1, for every n \neq 1
      c. 1, for every n \ge 1
                                                          d. None of these
17. The value of C_2 is
                                                          b. 1
     a. 1
     c. 3
8. The value (u_m, u_n) is:
     a. u_d where d = \gcd(m, n)
                                                          b. u_d where d = \text{lcm}(m, n)
     c. u_d where d = \frac{n}{m}
                                                           d. u_d where d = \frac{m}{n}
19. Given a natural number n > 1 such that (n-1)! \equiv -1 \pmod{n} Then
      a. n = p^k where p is prime, k > 1.
                                                           b. n = pq where p, q are primes.
      c. n = p^2 q where p, q and r is primes.
                                                           d. n = p where p is prime.
20. Which of the following statement is false?
      There exists an integer x such that
      a. x \equiv 23 \pmod{1000}, x \equiv 45 \pmod{6789}
                                                          b. x \equiv 32 \pmod{1000}, x \equiv 44 \pmod{9876}
```

121

d. $x \equiv 32 \pmod{1000}, x \equiv 45 \pmod{9876}$

c. $x \equiv 23 \pmod{1000}, x \equiv 54 \pmod{6789}$

Descriptive

Time: 2 hrs. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

- 1. a. Prove that Given two non-zero integers a and b, there exist integers x and y such that (a, b) = ax + by.
 - b. Find the value of x and y to satisfy 423x + 198y = 9.
- 2. a. Prove that If the integer a have order k modulo n then k > 0 then a^h has order $\frac{k}{(h,k)}$ modulo n.
 - b. If p and q are distinct primes, prove that

$$p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$$

- c. Find the remainder of $111^{333} + 333^{111}$ are divided by 7.
- 3. a. Find the common solution of the following system of linear congruence: 5+5=10

$$x \equiv 5 \pmod{6}$$

$$x \equiv 4 \pmod{11}$$

$$x \equiv 3 \pmod{17}$$

b. Solve the following linear congruence:

$$25x \equiv 10 \pmod{29}$$

- 4. a. State and prove Euler's criterion. 5+5=10
 - b. Prove that -a,b = ab.
- 5. a. Find the solution of $3x^2 + 9x + 7 \equiv 0 \pmod{13}$. 5+5=10
 - b. Determine whether the following congruence has solution or not:

$$x^2 \equiv -46 \pmod{17}$$

- 6. a. Prove that There is an infinite number of primes. 4+3+3

 b. Let n be a prime number. Then prove that $x^2 \equiv 1 \pmod{n}$ if =10
 - b. Let p be a prime number. Then prove that $x^2 \equiv 1 \pmod{p}$ if and only if $x \equiv \pm 1 \pmod{p}$.
 - c. Find the remainder of 4(29!) + 5! divided by 31.

- 7. a. Prove that If r_1, r_2, \dots, r_n is a CRS modulon, then $ar_1 + b, ar_2 + b, \dots, ar_n + b$ is also CRS mod n, where (a, n) = 1 & b is an integer.
 - b. Find the value of $\left(\frac{29}{53}\right)$.
 - c. Express the rational number $\frac{187}{57}$ as finite simple continued fraction.
- 8. a. Prove that For the Fibonacci sequence, $(u_n, u_{n+1}) = 1$ for every $n \ge 1$.
 - **b.** Prove that The kth convergent of the simple continued fraction $[a_0; a_1, \cdots, a_n]$ has the value $C_k = \frac{p_k}{q_k}$ $0 \le k \le n$.

== *** = =