M.Sc. PHYSICS SECOND SEMESTER MATHEMATICAL PHYSICS MSP - 201

A

SET

JUSE OMR FOR OBJECTIVE PARTI

Duration: 3 hrs.

Full Marks: 70

Objective)

Time: 30 min.

Marks: 20

Choose the correct answer from the following:

1X20 = 20

- 1. The differential equation $x^2y''(x) + xy'(x) + (x^2 n^2)y(x) = 0$ is called b. Hermite Equation a. Legendre Equation c. Bessel Equation d. Laguerre Equation
- 2. The value of kroneker delta symbol δ_i^i in 3-dimensional space is

c. 6

- d. none of the above
- 3. The expression of $J_0(x)$ is
 - a. $1 \frac{1}{(1!)^2} \left(\frac{x}{2}\right)^2 + \frac{1}{(2!)^2} \left(\frac{x}{2}\right)^4 \frac{1}{(3!)^2} \left(\frac{x}{2}\right)^6 + \cdots$ c. $1 \left(\frac{x}{2}\right)^2 + \frac{1}{2^2} \left(\frac{x}{2}\right)^4 \frac{1}{3^2} \left(\frac{x}{2}\right)^6 + \cdots$
- b. $1 \frac{1}{(2!)^2} \left(\frac{x}{2}\right)^2 + \frac{1}{(3!)^2} \left(\frac{x}{2}\right)^4 \frac{1}{(4!)^2} \left(\frac{x}{2}\right)^6 + \cdots$ d. $1 \left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^4 \left(\frac{x}{2}\right)^6 + \cdots$
- 4. The outer product of two mixed tensors $A_{\nu}^{\alpha\beta}$ and B_{α}^{ρ} of rank 3 and 2 respectively followed by a contraction produces a new tensor of rank

- (b) 1
- (c) 3

(d)5

a. 0

- b. 1 d. 5
- c. 3
- 5. The expression $J_{-n}(x)$ is
 - a. $(-1)^{n-1}J_n(x)$

b. $(-1)^n J_n(x)$

c. $(-1)^{n+1}J_n(x)$

- $d.-J_n(x)$
- 6. The number of independent components of a symmetric tensor of rank 2 in *n*dimensional space is
 - a. n^2

c. n + 12

- b. $\frac{n(n+1)}{2}$ d. n(n-1)
- 7. Which one of the following recurrence relation is true
 - a. $2J'_n(x) = J_{n-1}(x) J_{n+1}(x)$
- b. $2 J'_n(x) = -J_{n-1}(x) J_{n+1}(x)$
- c. $2J'_n(x) = J_{n-1}(x) + J_{n+1}(x)$
- d. $2J'_n(x) = -J_{n-1}(x) + J_{n+1}(x)$
- The value of $g_{\mu\nu}A^{\mu\lambda}$ is $(A^{\mu\lambda})$ is a contravariant tensor of rank 2 and $g_{\mu\nu}$ is the covariant metric tensor of rank 2)
 - a. Ava

b. Azv

c. A_{ν}^{λ}

d. A.

- 9. $\left(\frac{1}{1-t}\right)e^{-\left(\frac{1}{1-t}\right)x}$ is the generating function of a. Hermite polynomial b. Laguerre polnomial c. Bessel polynomial d. Legendre polynomial 10. If (G,\cdot) is a group such that $(ab)^{-1} = a^{-1}b^{-1}$ for $\forall a,b \in G$, then G is a/an a. commutative subgroup b. Abelian group c. Non-Abelian group d. none of these 11. The value of $L_1\left(\frac{1}{2}\right)$ will be 12. This is an abelian group $\{-3 \text{ n}: \text{n} \in Z\}$ under? a. division b. subtraction c. addition d. multiplication 13. If $f(x) = 2 + x = \sum_{n=0}^{1} c_n p_n(x)$ then the value of c_0 is
- 14. If K is kernel of a group homomorphism f: G → H, then which statement is not true?a. K is an abelian subgroup of Gb. K is a normal subgroup of G
 - c. $K = \{e\}$ for some homomorphism d. K = G for some homomorphism
- 15. The value of P_2^1 (sin θ) at $\theta = \frac{\pi}{4}$ will be

 a. $\frac{1}{2}$ b.
 c. $\frac{3}{4}$ d.
- 16. If b and c are elements in a group G and if $b^5 = c^3 = e$, where e is the identity of G, then the inverse of $b^2cb^4c^2$ must be
 - a. $cb^2c^2b^4$ b. $c^2b^4cb^2$ c. cbc^2b^3 d. $b^4c^2b^2c$
- 17. The value of $\int_{-\infty}^{\infty} e^{-x^2} [H_1]^2 dx$ will be a. $\sqrt{\pi}$ b. $\sqrt{\frac{\pi}{2}}$ c. $\sqrt{\pi}/2$ d. $2\sqrt{\pi}$
- **18.** For every group G, the identity mapping I_G defined by $I_G: G \to G$, $I_G(x) = x$, $\forall x \in G$ is a/an
 - a. homomorphism of G onto itself
 c. one-one mapping
 b. isomorphism of G onto itself
 d. none of these

19. If
$$f(x) = 1 + 2x = \sum_{n=0}^{1} c_n H_n(x)$$
 then the value of c_1 is a. 1 b. 2 c. $\frac{1}{2}$ d. 0

20. A subset
$$H$$
 of a group $(G,*)$ is group if

a. $a, b \in H \Rightarrow a * b \in H$

b. $a \in H \Rightarrow a^{-1} \in H$

c. $a, b \in H \Rightarrow a * b^{-1} \in H$

d. H contains the identity element

(<u>Descriptive</u>)

Time: 2 hrs. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

- 1. a. Obtain a general of order n of the Legendre second-order differential equation. 8+2=10
 - b. Define Legendre polynomial $p_n(x)$ in differential form
- 2. a. Define Christofell's symbols of first and second kind. Show that, $\Gamma^{\sigma}_{\mu\nu} = g^{\sigma\lambda}\Gamma_{\lambda,\mu\nu}.$
 - b. Prove that the addition and subtraction of two mixed tensors of rank 2 each produces a new mixed tensor of rank 2.
 - c. If $g_{\mu\nu} = 0$ for $\mu \neq \nu$ and μ, ν, σ are unequal indices, find the value of $\Gamma^{\nu}_{\mu\mu}$.
- 3. a. Using the Rodrigue's formula of Hermite polynomial obtain an expression of $H_3(x)$ =10
 - b. Prove that the Hermite polynomial satisfies the recurrence relation $2nH_{n-1}(x) = H'_n(x)$.
 - **c.** Find an expression of $H_{2n}(x)$ at x = 0.
- 4. a. Show that the additive group (R, +) of real numbers is isomorphic to the multiplicative group (R^+, \times) of positive real numbers

- b. Check whether the set of integers Z with the binary operation " * " defined as a*b=a+b+1 for $a,b\in Z$ is a group or not.
- c. Define kernel, range and null space of a linear transformation.
- 5. a. Define Volterra Integral Equation of the first kind.

 b. Reduce the boundary value problem to Fredholm Integral

 Equation $y''(x) + x \ y(x) = 1$, where y(0) = 0, y(1) = 0.

 c. Express the above Fredholm Integral Equation into its 2^{nd} kind
- 6. a. Explain the characteristics of an abelian group?
 b. Let G = {1, -1, i, -i}, which forms a group under multiplication and Z is the group of all integers under addition. Prove that the mapping f onto G such that f(x) = iⁿ ∀n ∈ Z is a homomorphism.
- 7. a. Express the polynomial $2 p_2(x) + 3 p_1(x)$ into the Laguerre polynomial.

 b. Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{\pi x}{2} \sin x}$.
 - c. Prove that $L_n(0) = 1$.
- 8. Work out the symmetry group of a square. How many elements does it have? Construct the multiplication table.

 2+2+6
 =10

= = *** = =

P.1.O.