MASTER OF BUSINESS ADMINISTRATION
 SECOND SEMESTER OPERATION RESEARCH MBA-207

Duration: 3 Hrs.
Marks: 70

$$
\left\{\begin{array}{l}
\text { PART : A (OBJECTIVE) }=20 \\
\text { PART : B (DESCRIPTIVE) }=50
\end{array}\right\}
$$

[PART-B: Descriptive]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) \& any four (4) from the rest]

1. When Sub -Games Method used to solve a game with mixed strategy? Solve the following Game.

B A	I	II	III	IV	V
I	-5	5	0	-1	8
II	8	-4	-1	6	-5

2. a. Explain the role of operations research in management.
b. What are the different types of models used in operations research? Explain any two.
3. a. What do you mean by divisibility and non-negativity in context of LPP?
b. A company produces two types of pen, say A and B. Pen A is a superior quality and pen B is a lower quality. Profit on pens A and B is Rs. 5 and Rs. 3 per pen respectively. Raw material required for each pen A is twice as that for pen B. The supply of raw materials is sufficient only for 1000 pens of type B per day. Pen A requires a special clip and only 400 such clips are available per day. For pen B, only 700 clips are available per day. Formulate the problem as a linear programming model in order to maximize the profit.
4. a. Distinguish between surplus and artificial variable.
b. Solve the following LPP by Graphical Method or by Simplex method

Maximize	$Z=6 X_{1}+8 X_{2} \quad$ Profit function
Subject to	$30 X_{1}+20 X_{2} \leq 50$ Raw Material Constraints
	$5 X_{1}+10 X_{2} \leq 60$ Labour constraints
Where	$X_{1}, X_{2} \geq 0$

5. a. Describe the assignment problem giving a suitable example. Give two areas of its application.
b. Solve the following Assignment problem. The cost of performing each job by each man is given below (in Rs.)

| Men | Jobs | P | Q | R | S |
| :---: | :---: | :---: | :---: | :---: | :---: | S | A | 5 | 3 |
| :---: | :---: | :---: |
| 2 | 8 | 40 |
| B | 7 | 9 |
| 2 | 6 | 45 |
| C | 4 | 6 |
| 5 | 7 | 50 |
| D | 5 | 7 |
| 7 | 8 | 55 |

Find the optimal Assignment that will result in minimum cost to perform the jobs.
6. What do you mean by un-Balanced transportation problem? How it can be solved?
Find the optimal minimum value of the following transportation problem by using NWCM and LCEM and compare the value and give your interpretation.
(The data given in the table refer to Production in units)

Machines	A	B	C	D	Available
Operators	1	2	4	4	8
1	4	3	2	0	6
2	0	2	2	1	10
3	4	6	8	6	24
Required					

7. a. When a competitive situation is called a game?
b. What are the different types of strategy employed in game theory? Discuss.
8. a. What do you mean by utility and regret in context of decision theory?
b. In the following table pay-offs of three acts $\mathbf{A}_{1}, A_{2}, A_{3}$ and the events $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$.

Events	Pay-Off Table		
	A_{1}	A_{2}	A_{3}
	25	-10	-125
E_{2},	400	440	400
E_{3}	650	740	750

The probabilities of the states of nature are respectively $0.1,0.7$ and 0.2 . Calculate and tabulate E.M.V and conclude which of the acts can be chosen as the best.

MASTER OF BUSINESS ADMINISTRATION
 SECOND SEMESTER OPERATION RESEARCH
 MBA-207

[PART-A: Objective]

Choose the correct answer from the following:

1. Operations research approach is \qquad -
a. Multi-disciplinary
b. Scientific
c. Intitutive
d. All of these
2. Most of the constraints in the linear programming problem are expressed as \qquad $-$
a. Equations
b. Inequalities
c. Both a) and b)
d. None of these
3. Every linear programming problem includes \qquad which relates variables in the problem to the goal of the firm.
a. Constraints
b. Objective function
c. Inequalities
d. None of these
4. Slack variables are added to constraints of the - type and the objective function is of maximization.
a. =
b. \leq
c. \geq
d. None of these
5. Leaving variable is selected with key row having positive \qquad ratio.
a. Maximum
b. Minimum
c. Both of these
d. None of these
6. Assignment problem deals in allocating the various resources or items to various activities on \qquad basis in such a way that the time or cost involved is minimised and sale or profit is maximised.
a. One to one
b. One to many
c. Many to one
d. None of these
7.

\qquad
a. Stone square method
b. North west corner method
c. Lowest cost entry method
d. None of these
8. When total supply is equal to the total demand in a transportation problem, the problem is said to be \qquad -.
a. Unbalanced problem
b. Balanced problem
c. Maximisation problem
d. None of these
9. Two person zero- sum game means that the sum of \qquad to one player is Equal to the sum of the \qquad to other player.
a. Gain, loss
b. Alternatives, Courses of action
c. Income, Expenditure
d. None of these
10. The rules of \qquad are use
a. Probability Method
b. Odds Method
c. Dominanace
d. None of these
11. Use of ODDS method is possible only in case of games with__ matrix.
a. 2×2
b. 3×3
c. 4×2
d. 2×4
12. The \qquad in a pay off matrix is one which is the smallest value in its raw and the largest value in its column.
a. Saddle point
b. Pure strategies
c. Odds
d. None of these
13. \qquad techniques used to allocate scarce resources in an optimum manner in problems of scheduling, product mix etc.
a. Assignment Problem
b. LPP
c. Network analysis
d. None of these
14. The quantitive approach to decision analysis is a
a. logical approach
b. Rational approach
c. Scientific approach
d. All of the above
15. Constraints in an LP Model represents
a. Limitationsb. Requirements
c. Balancing limitations and requirements
d. All of the above
16. If a negative value appears in the solution values column of the simplex table, then a. The solution is optimal.b. The solution is infeasible.
c. The solution is unbounded.
d. None of these.
17. A game whose decision value is zero is termed as \qquad game.
a. Competitiveb. Fair
c. Both a and b
d. None of these
18. In decision theory EVPI= \qquad
a. EPPI + Maximum EMVb. EPPI-Maximum EMV
c. EPPI+ Minimum EMV
d. None of these
19. The statistical decision theory is also known as
a. Bayesian decision theoryb. Parametric decision theory
c. Both a \& b
d. None of theses
20. The course of action that maximizes the minimum possible pay-off is called decision criteria.
a. Maximin
b. Maxima
c. Minimax Regret
d. None of these

UNIVERSITY OF SCIENCE \& TECHNOLOGY; MEGHALAYA

Serial no. of the main Answer sheet

Course :

Semester: \qquad Roll No:
\qquad
\qquad
n

Enrollment No :

\qquad Course code :

Course Title :

\qquad

Session: \qquad 2016-17 \qquad Date :
:
...
\qquad
\qquad

$>$ The paper contains twenty $(20) /$ ten (10) questions.
$>$ The student shall write the answer in the box where it is provided.
\rightarrow The student shall not overwrite / erase any answer and no mark shall be given for such act.
$>$ Hand over the question paper cum answer sheet (Objective) within the allotted time (20 minutes / 10 minutes) to the invigilator.

Full Marks	Marks Obtained	Remarks
20		

