M.Sc. MATHEMATICS FIRST SEMESTER REAL ANALYSIS

 $\frac{MSM-101\ [REPEAT]}{\text{[USE OMR SHEET FOR OBJECTIVE PART]}}$

Duration: 3 hrs.

2023/01

Full Marks: 70

Objective

Time: 30 min.

Marks:20

1X20 = 20

Choose the correct answer from the following:

Which of the following is/ are locally connected?

a. Qis locally connected. c. Both \mathbb{Q} and \mathbb{R}^n are locally connected.

b. \mathbb{R}^n is locally connected. d. None of these.

2. Which of the following function(s) is/are differentiable?

c.

$$f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

f(x) = |x|

$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

3. Which of the following function(s) is/are true?

a. The function $f(x) = x^2$ is uniformly continuous, in the interval $0 < x < \infty$

c. The function $f(x) = x^3$ is not uniformly continuous, in the interval 0 < x < 2

b. The function $f(x) = \frac{1}{x}$ is uniformly continuous, in the interval 0 < x < 1

d. The function $f(x) = x^2$ is uniformly continuous, in the interval 0 < x < 1

Let $X = \{(a, b) \in \mathbb{R}^2 : a^2 + b^2 = 1\}$ be the unit circle inside \mathbb{R}^2 . Let $f: X \to \mathbb{R}$ be a continuous function. Then

a. Image f is compact

c. The given information is not sufficient to determine whether Image f is compact.

b. Image f is compact

d. None of these.

5. Let $\{a_n\}$, $\{b_n\}$ and $\{C_n\}$ be sequence of real numbers such that $b_n=a_{2n}$ and $C_n=a_{2n+1}$. Then $\{a_n\}$ is convergent

a. If both $\{b_n\}$ and $\{C_n\}$ are convergent.

c. Implies $\{b_n\}$ is convergent but $\{C_n\}$

need not be convergent

6. Which of the following set is compact?

a.
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$

c. $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1\}$

b. Implies both $\{b_n\}$ and $\{C_n\}$ are convergent

d. Implies $\{C_n\}$ is convergent but $\{b_n\}$ need not be convergent

 $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$

d. None of these

Which of the following is/ are true?

a.
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = e$$
 and
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = e$$
 and
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = e + 1$$

b. $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = e$ and $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = e$ and $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = e$

c. $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = e$ but $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}$ and $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}$ does not exist.

b.
$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^{n+1} = e$$
 and $\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^{n+1} = e$

d. Both
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}$$
 and $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}$ does not exist.

8. Which of the following define a metric on \mathbb{R} .

(A)
$$d(x,y) = |x^2 - y^2|$$

(B)
$$d(x,y) = \frac{|x-y|}{1+|x-y|}$$

(C)
$$d(x,y) = |x - 2y| + |2y - x|$$

9. Let
$$f,g$$
 and h are bounded function on a closed interval $[a,b]$, such that $f(x) \le g(x) \le h(x)$, $\forall x \in [a,b]$. Let $P = \{a = a_0 < a_1 < a_2 < \dots < a_n = b\}$ be a partition of $[a,b]$. $U(P,f)$ and $U(P,f)$ denotes the upper and Lower sums of f and similarly for g and g . Which of the following statements is necessarily true

a. If
$$U(P,h) - L(P,f) < 1$$
 then $U(P,g) - L(P,g) < 1$

a. If
$$U(P,h) - L(P,f) < 1$$
 then $U(P,g) - L(P,g) < 1$ then $U(P,g) - L(P,g) < 1$ then $U(P,g) - L(P,g) < 1$

c. If
$$U(P,h) - L(P,f) < 1$$
 then $U(P,g) - L(P,g) < 1$

c. If
$$U(P,h) - L(P,f) < 1$$
 then $U(P,g) - L(P,g) < 1$ then $U(P,g) - L(P,g) < 1$

10. If
$$f(x) = \frac{1}{1 + e^{\frac{1}{(x-3)^2}}}$$
, if $x \ne 2$ and $x \ne 3$, $f(2) = 1$ and $f(3) = \frac{1}{1+e}$, then

a. f is continuous at
$$x = 2$$
 but not at $x = 3$ b. f is continuous at $x = 3$ but not at $x = 2$

c. is neither continuous at
$$= 2$$
 nor at $= 3$ d. is continuous at $= 2$ and $= 3$ both

11. Which of the following is a correct statement:

- a. Inverse image of a compact metric space under a continuous function is compact
- b. Image of a compact metric space is compact.
- c. Every closed and bounded subset of a compact metric space is compact.
- d. The closed set [0, ∞] is compact.

12. If $\{x_n\}$ is a convergent sequence in \mathbb{R} and $\{y_n\}$ is a bounded sequence in \mathbb{R} , then

a.
$$\{x_n + y_n\}$$
 is convergent

c.
$$\{x_n + y_n\}$$
 has no convergent subsequence

b.
$$\{x_n + y_n\}$$
 is bounded d. $\{x_n + y_n\}$ has no bounded subsequence

13. Let
$$\{a_n\} = \{n^2\}$$
 and $\{b_n\} = \{-n^2\}$ be two real sequence, then

a. The sequence
$$\left\{\frac{a_n}{b_n}\right\}$$
 is convergent but the sequence $\{a_n\}$ and $\{b_n\}$ are divergent.

c. The sequence
$$\left\{\frac{a_n}{b_n}\right\}$$
 and $\left\{a_n\right\}$ are convergent but the sequence $\left\{b_n\right\}$ is divergent.

a. The sequence
$$\left\{\frac{a_n}{b_n}\right\}$$
 is convergent but the sequence $\left\{\frac{a_n}{b_n}\right\}$ is divergent but the sequence $\left\{a_n\right\}$ and $\left\{b_n\right\}$ are divergent.

d. None of the sequences
$$\left\{\frac{a_n}{b_n}\right\}$$
, $\left\{a_n\right\}$ and $\left\{b_n\right\}$ is convergent.

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$
 is divergent

b.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 is convergent

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$
 is divergent
c. $\sum_{n=1}^{\infty} \frac{n}{n+1}$ is convergent

d.
$$\sum_{n=1}^{\infty} n^3$$
 is divergent

16. If
$$u = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right)$$
 and $v = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right)$ then a. $u = v = \infty$

$$b. \ u = \infty, v = 0$$

a.
$$u = v = \infty$$

$$b. u = \infty, v = 0$$

c.
$$u=0, v=\infty$$

$$d. u = 0, v = 0$$

17. Which of the following is/ are correct?

a.
$$f(x) = x \sin \frac{1}{x}$$
 is continuous but not differentiable on $(0,1)$

c.
$$f(x) = x \sin \frac{1}{x}$$
 is both continuous and differentiable on $(0, 1)$

b.
$$f(x) = x \sin \frac{1}{x}$$
 is differentiable but not continuous on $(0, 1)$

18. Consider the following statement:

P: Every continuous function on [a, b] is Riemann integrable.

Q:
$$f(x) = \begin{cases} 1, & \text{if } x \in \left[0, \frac{1}{2}\right] \\ 0, & \text{if } x \in \left(\frac{1}{2}, 1\right] \end{cases}$$
 is Riemann Integrable.

b. Both P and Q are true, but P is not the correct explanation of Q

c. Both P and Q are true and P is the correct explanation of Q

d. Q is true but P is false

19. Consider the following two statements

P: Every Contraction is Lipschtiz continuous function.

Q: Every Lipschitz continuous function is Contraction.

b. P true. Q false.

c. Both P & Q are true.

d. Both P & Q are false

20. The derive set of $(2,5) \cup \{7\}$ is

$$(2,5) \cup \{7\}$$

$$[2,5] \cup \{7\}$$

c.

Descriptive

Marks: 50 Time: 2 hrs. 30 mins.

[Answer question no.1 & any four (4) from the rest]

- 4+6=10 1. a. Show that x^2 is integrable on [0,1]. b. Show that the metric space $\mathbb R$ with usual metric is connected.
- 2. a. Let $f(x) = x^2$. For each $n \in \mathbb{N}$, let σ_n be the partition $\left\{0, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n}{n}\right\}$ 5+2+3 of [0, 1]. Compute $\lim_{n\to\infty} U(\sigma_n; f)$ and $\lim_{n\to\infty} L(\sigma_n; f)$.

b. With the usual metrics on [0,1] and [0,2], find whether the function $f:[0,1] \rightarrow [0,2]$ define by f(x) = ax + b is isometry.

c. Let $f: X \to X$ be a function defined as $f(x) = x^2$ where $X = \left[0, \frac{1}{3}\right]$ is a metric space with usual metric. Prove or disprove that f is

contraction. Is f is Lipschitz continuous function?

(a)
$$d_1(x, y) = |x^2 - y^2|$$

 $(b)d_2(x, y) = |x^3 - y^3|$
 $(c)d_3(x, y) = d_1(x, y) + d_2(x, y)$

b. Find all the limit points of (0, 1).

3. a. Which of the following define a metric on \mathbb{R} ?

c. Let $I_n = \left\{ \left(\frac{-1}{n}, \frac{1}{n}\right) : n \in \mathbb{R} \right\}$ and (\mathbb{R}, d) be usual metric space. Prove or disprove that $\cap I_n$ is open.

4. a. Show that the series $\sum \frac{3\cdot 6\cdot 9\cdots 3n}{7\cdot 10\cdot 13\cdots (3n+4)}x^n$, x>0 converges for $x\leq 1$, and diverges for x>1. 5+5=10

b. Examine the convergence of $\sum \frac{1}{2^n}$, $n \ge 1$.

5×2=10 5. a. Evaluate

(i)
$$\lim_{n\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$$

(ii) $\lim_{n\to 0} \left(1 - \frac{1}{x}\right)^x$

USTM/COE/R-01

4+4+2

=10

(iii)
$$\lim_{n\to 0} \frac{\sin x}{x}$$

(iv)
$$\lim_{n\to 0} \frac{\sec^2 x - 2\tan x}{1+\cos x}$$

(iii)
$$\lim_{n\to 0} \frac{\sin x}{e^x - 1}$$

(iv) $\lim_{n\to 0} \frac{\sec^2 x - 2 \tan x}{1 + \cos x}$
(v) $\lim_{n\to 0} \frac{1}{x^2} \log \left(\frac{\tan x}{x}\right)$

6. a. Prove that for any real number k, the polynomial given by 4+4+2 $f(x) = x^3 + x + k$ has exactly one real root.

b. If $f(x) = \begin{cases} x^3 & \text{for } x < 1 \\ ax + b & \text{for } x > 1 \end{cases}$, find the values of a and b for which f(x) is differentiable at x = 1.

c. Prove that the discrete metric space (X, d) is compact if X is finite and it is not compact if *X* is infinite

7. a. Find the closure and derived set of Q.

2+3+5 =10

b. Prove that if $\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + \frac{a_{n-1}}{2} + a_n = 0$, then the equation $a_0 x^n + a_1 x^{n-1} + \dots + a_n = 0$ has at least one root between 0 and 1.

c. Prove that the following functions are uniformly continuous:

(i)
$$f(x) = \frac{x}{100}$$
 in [0, 2]

(i)
$$f(x) = \frac{x}{x+2}$$
 in [0, 2]
(ii) $f(x) = x^2 + 4x$ in [-1, 1]

8. a. If $s_1 > s_2 > 0$ and if $s_{n+1} = \frac{1}{2}(s_n + s_{n-1})$ for $n \ge 2$. Prove that : (i) s_1, s_3, s_5, \cdots is monotonic decreasing.

6+4=10

- (ii) s_2, s_4, s_6, \dots is monotonic increasing.
- (iii) (s_n) is convergent and $\lim_{n\to\infty}\frac{1}{3}(s_1+2s_2)$.

b. Let $s_n=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}$. Prove that $\lim_{n\to\infty}s_n$ exists and lies between 2 and 3.