REV-00 MSE/09/19

M.Sc. ELECTRONICS First Semester SEMICONDUCTOR MATERIALS AND DEVICES (MSE - 103)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

Answer any five of the following questions:

- 1. Explain the breakdown mechanisms of p-n junction diode. A silicon p-n junction has acceptor density $N_a=10^{18}$ cm⁻³ and donor density $N_d=10^{15}$ cm⁻³ at 300 K. Calculate the built in electric potential of the diode. (8+2=10)
- 2. Explain Hall Effect experiment briefly. A current of 10mA is passed through an n-type germanium sample having 2mm width and 0.2mm thickness. Then, a magnetic field of 0.1 Weber/m² is applied to the sample in a direction perpendicular to the current flow. If the Hall Voltage developed is 1.0mV.
 A alculate the Hall constant and the number of electrons/m³. (5+5=10)
- Distinguish between an ideal diode and a real diode. Explain briefly about Ebers-Moll model of BJT. (3+7=10)
- 4. Derive the expression for drain current of a MOSFET in its saturation region. (10)

5. For the given network, determine I_C , V_{CE} , V_B and V_C .

(10)

6. In an N-channel JFET biased by the voltage divider method, determine the value of resistance R_S so that the operating point values are I_D=4 mA and V_{DS}=8 V. given that, $V_{DD}=25$ V, $R_{G1}=1.2$ M Ω , $R_{G2}=0.6$ M Ω . JFET parameters are $I_{DSS}=12$ mA and $V_{P} = -4 V.$ (10)

7. Define CMRR and slew rate of Op-Amp. Draw circuit diagrams for inverting and non-inverting amplifier using Op-Amp, and derive their voltage gains. (4+6=10)(10)

8. Discuss the theory of energy band formation in solids.

REV-00 MSE/09/19

M.Sc. ELECTRONICS First Semester SEMICONDUCTOR MATERIALS AND DEVICES (MSE - 103)

Duration: 20 minutes

(PART A - Objective Type)

I. Choose the correct answer:

- (i) Intrinsic carrier concentration of a semiconductor is directly proportional to
 (a) T³
 (b) T^{2/3}
 (c) T^{3/2}
 (d) None of the above
- (ii)The intrinsic concentration of a semiconductor at 300K is 10¹³ cm⁻³, when it is doped with donor type impurities, the majority carrier concentration becomes 10¹⁷ cm⁻³. What is the value of its minority carrier density?
 - (a) $0.999X10^{17}$ cm⁻³ (b) 10^{17} cm⁻³

(c) 10^9 cm^{-3} (d) None of the above

(iii) The free electron density in a conductor is approximately 10^{22} cm⁻³. The electron mobility is 10 cm²/Vs. What is the value of its resistivity?

- (a) $10^4 \Omega m$ (b) $1.6 X 10^{-2} \Omega m$
- (c) $10^{-4} \Omega m$ (d) None of the above

(iv) Conductivity of a semiconductor is not related to

(a) mobility of the carrier.

- (b) effective density of states in the conduction band.
- (c) electron charge.
- (d) surface states in the semiconductor.
- (v) A semiconductor specimen of breadth D, width W, carrying current I is placed in a magnetic field B to develop Hall Voltage $V_{\rm H}$ in a direction perpendicular to I and B. $V_{\rm H}$ is not proportional to
 - (a) *B* (b) *I*
 - (c)1/W (d) None of the above

(vi) What is the temperature co-efficient of threshold voltage for a Germanium diode operating at room temperature?

4

(a) -1.9mV/°C	(b) -2.0 mV/°C
(c) -2.1 mV/°C	(d) -2.3 mV/°C

Marks – 20

 $1 \times 6 = 6$

II. Write true or false:

- (a) The diffusion capacitance of a p-n junction diode increases exponentially with forward bias.
- (b) A tunnel diode operates under avalanche breakdown mode.
- (c) The I_{CEO} of a BJT is given by αI_{CBO} .
- (d) The Early effect in a bipolar junction transistor is caused by large collector-base reverse bias.
- (e) Channel length Modulation occurs in a MOSFET during accumulation state.
- (f) MOSFETs are current controlled devices.
- (g) A buffer has very large current gain.

III. Fill in the blanks:

(A p-channel MOSFET has ______ threshold voltage.

(ii)The reverse current of a pn-junction diode is very sensitive to______.

(iii) The depletion region of a p-n junction diode has no_____ carriers.

(iv) A Zener diode is generally used in ______ regulator circuits.

(v)Emitter current of a transistor is ______ times the base current.

(vi) The locus of the pinch off voltage for a FET on its I_D - V_{DS} characteristic has

shape.

(vii) JFET has ______ input impedance than that of a MOSFET.

 $1 \times 7 = 7$