B.Sc. PHYSICS FIRST SEMESTER INTRODUCTION TO MATHEMATICAL PHYSICS BSP – 101

[USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Full Marks: 70

(PART-A: Objective)

Time: 30 min.

Marks: 20

Choose the correct answer from the following:

 $1 \times 20 = 20$

1. If $r = x\hat{i} + y\hat{j} + z\hat{k}$ and |r| = r, then $div \hat{r}$ is b. 3

c. -3

d. -2

2. For the right handed system of three coplanar vectors

$$\vec{A} = \hat{i} - \hat{j} - 2\hat{k}$$
, $\vec{B} = 3\hat{i} + 5\hat{j} + 6\hat{k}$, $\vec{C} = -\hat{i} + 4\hat{j} + m\hat{k}$, the value of m must be equal to

a. 5

b. 8

c. 0

d. 6.5

3. A vector points \mathbf{A} vertically upward and point \mathbf{B} towards north. The vector product $\mathbf{A} \times \mathbf{B}$ is

a. along west

b. along east

c. zero

d. vertically downward

4. The unit normal to $x^2 + y^2 + z^2 = 5$ at the point (0,1,2) is

a. $\frac{1}{\sqrt{5}}(\hat{i}+\hat{j}+\hat{k})$

 $b. \frac{1}{\sqrt{5}}(\hat{i}+\hat{j}-\hat{k})$

c. $\frac{1}{\sqrt{5}}(\hat{i}+2\hat{k})$

$$\frac{\mathrm{d.}}{\sqrt{5}}(\hat{i}-\hat{j}+\hat{k})$$

5. Gauss's theorem is the relationship between

a. Surface and volume integral

b. line and surface integral

c. line and volume integral

d. none of these

6. If $\phi = yz$, then its gradient is

a. $z\hat{j} + y\hat{k}$

b. 0

c.
$$y\hat{j} + z\hat{k}$$

d. $\hat{i} + \hat{j} + \hat{k}$

7. The electric field due to a point charge Q is expressed $\vec{E} = \frac{Q\hat{r}}{4\pi\varepsilon_0 r^2}$, then the divergence of

electric field due to that point charge is

a.
$$\frac{3Q}{4\pi\varepsilon_0 r^2}$$

c. 0

b. $\frac{2Q}{4\pi\varepsilon_0 r}$

d. $\frac{3Q}{4\pi\varepsilon_0 r}$

8. The direction of $grad\phi$ is

a. Tangential to level surfaces

c. Inclined at 45° to level surface

b. Normal to level surface

d. Arbitrary

9. If
$$\overrightarrow{A} = x\hat{i}$$
 and $\overrightarrow{B} = y\hat{j}$ then $\nabla(\overrightarrow{A}.\overrightarrow{B})$ is equal to

a.
$$x\hat{i} + y\hat{j}$$

b. 0

c.
$$\frac{1}{2}yx^2\hat{i} + \frac{1}{2}xy^2\hat{j}$$

d. 2

10. The flux leaving any closed surface per unit volume in a vector field \overrightarrow{A} is called

c. curl A

b.
$$\overrightarrow{div} \stackrel{\rightarrow}{A}$$

d. $\int_{A}^{A} flux A$

11. Which of the following vectors are perpendicular to each other?

(i)
$$2\hat{i} - 2j + 4\hat{k}$$
, (ii) $10\hat{i} + 8\hat{j} + 12\hat{k}$ and

(iii)
$$3\hat{i} + 11\hat{j} + 4\hat{k}$$

a. (i) And (ii)

(iii) And (i)

- b. (ii) And (iii)
- d. None of these
- 12. If for two vectors \overrightarrow{a} and \overrightarrow{b} , $|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}-\overrightarrow{b}|$ then angle between \overrightarrow{a} and \overrightarrow{b} is
 - a. 0

c. $\frac{\pi}{4}$

d. 7

13. If
$$\overrightarrow{F} = grad(2x^2 - 3y^2 + 4z^2)$$
, then $curl \overrightarrow{F}$ is

a.
$$4x - 6y + 8z$$

$$b. \ 4x\hat{i} - 6yj + 8z\hat{k}$$

14. Order of differential equation whose solution $y = ae^x + be^{2x} + ce^{3x}$ will be

b. 2

d. 0

I.
$$\frac{1}{f(D)}x^m$$
 will be equal to

a.
$$[F(D)]^{-1}x^m$$

b.
$$F(D)x^m$$

c.
$$mF(D)x^{m-1}$$

b.
$$F(D)x^m$$

d. $mx^{m-1}[F(D)]^{-1}$

16. What is the wronskian determinant of x^2, x^3

c.
$$3x^4$$

17. The value of α so $e^{\alpha y^2}$ that is an I.F. of the equation $(e^{\frac{-y^2}{2}} - xy)dy - dx = 0$

c.
$$\frac{1}{2}$$

$$-\frac{1}{2}$$

18. General solution of linear differential equation of first order $\frac{dx}{dy} + Px = Q$

a.
$$ye^{\int P.dx} = \int Qe^{\int P.dx} dx$$

b.
$$xe^{\int P.dy} = \int Qe^{\int P.dy} dy + C$$

$$y = \int Q e^{\int P \cdot dx} dx + C$$

$$d. x = \int Q e^{\int P \cdot dy} dy + C$$

19. Particular integral of $y'' + 2y' - 3y = e^{2x}$ is

$$a. -\frac{1}{5}e^{2x}$$

b.
$$\frac{1}{5}e^{2x}$$

c.
$$-\frac{1}{5}$$

d.
$$-\frac{1}{5}$$

20. When y = f(x) + c g(x) is the solution of an ordinary differential equation then

a. f is called the particular integral (P.I.) and g is called the complementary function (C.F.)

b. f is called the complementary function (C.F.) and g is called the particular integral (P.I.).

c. f is called the complementary function (C.F.) and particular function (P.I.)

d. g is called the complementary function (C.F.) and particular function (P.I.)

- 5. Define Laplacian operator in curvilinear co-ordinate system. (i) In curvilinear co-ordinate show that the differential of an arc length is $(ds)^2 = h_1^2(du)^2 + h_2^2(dv)^2 + h_3^2(dw)^2$ (ii) If u, v, w are orthogonal curvilinear co-ordinates, show that $\frac{\partial \overline{r}}{\partial u}, \frac{\partial \overline{r}}{\partial v}, \frac{\partial \overline{r}}{\partial w}$ and ∇u , ∇v , ∇w are reciprocal system of vectors.
- 6. State Stoke's theorem. Verify Stoke's theorem for $\vec{F} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and c is its boundary.
- 7. i. If $\vec{A} = (3x^2 + 6y)\hat{i} 14yz\hat{j} + 20xz^2\hat{k}$, evaluate the $\vec{A} \cdot dr$ from (0, 0, 0) to (1, 1, 1) along the curve C.
 - ii. Evaluate $\iint_{s} (yz\hat{i} + zx\hat{j} + xy\hat{k}) \cdot ds$ where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant.
 - iii. If $\vec{F} = (2x^2 3z)\hat{i} 2xy\hat{j} 4x\hat{k}$, the evaluate $\iiint_V \nabla \times \vec{F} \, dV$, where V is the closed region bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.
- 8. i. Establish the relation $curlcurl \stackrel{\rightarrow}{f} = \nabla div \stackrel{\rightarrow}{f} \nabla^2 \stackrel{\rightarrow}{f}$
 - ii. Prove that for every vector field \vec{V} , $div(curl\vec{V}) = 0$.

== *** ==

7 + 3 = 10

Descriptive

Time: 2 hrs. 30 min.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

1. Solve (i)
$$(1+e^{\frac{x}{y}})+e^{\frac{x}{y}}(1-\frac{x}{y})\frac{dy}{dx}=0$$

Solve the differential equation $\frac{d^2x}{dt^2} + \frac{g}{l}x = \frac{g}{l}L$ where g, l, L are constants subject to the conditions

$$x = a, \frac{dx}{dt} = 0$$
 at $t = 0$.

2.

i. Write the characteristic of scalar triple product.

ii. Prove that [a+b, b+c, c+a]=2[a,b,c].

iii. Prove that the diagonal of a parallelogram bisect each other.

3. Solve (i)
$$(x + 2y)(dx - dy) = dx + dy$$

5+5=10

(ii)
$$\frac{dy}{dx} = \frac{y+1}{(y+2)e^y - x}$$

(ii) Find the value of λ , for the differential equation $(xy^2 + \lambda x^2 y)dx + (x + y)x^2 dy = 0$ is exact.

4. i. Prove that the altitudes of a triangle are concurrent.

1+4+2 =10

- ii. Find the value of n for which the vector $\vec{r} \cdot \vec{r}$ is solenoidal, where $r = x\hat{i} + y\hat{j} + z\hat{k}$.
- iii. Define curl of a vector function.